首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.  相似文献   

2.
The attempts at unified model fitting to explain the spectral variations in Cyg X-3 suggest equally probable fits with a combination of an absorbed blackbody and a separately absorbed power law with an exponential cut-off or a composite of absorbed free-free emission with a power law hard X-ray component apart from the iron emission line. These seemingly ordinary but ad hoc mixtures of simple X-ray emission mechanisms have a profound implication about the geometry of the X-ray source. While the first set suggests a black-hole nature of the compact object, the second combination is consistent with a neutron star binary picture. The spectral variability at hard X-ray energies above 30 keV can provide crucial input for the unified picture. In this paper, we present spectral observations of Cyg X-3, made in our on-going survey of galactic and extragalactic X-ray sources in the 20–200 keV energy region, using Large Area Scintillation counter Experiment. The data show a clear power-law photon spectrum of the form dN/dE ∼ E−2.8 in the 20 to 130 keV energy range. A comparison with earlier data suggests that the total number of X-ray photons in the entire 2–500 keV energy band is conserved at all time for a given luminosity level irrespective of the state. We propose that this behaviour can be explained by a simple geometry in which a thermal X-ray source is embedded in a hot plasma formed by winds from the accretion disk within a cold shell. The high/soft and low/hard X-ray states of the source are simply the manifestation of the extent of the surrounding scattering medium in which the seed photons are Comptonized and hot plasma can be maintained by either the X-ray driven winds or the magneto-centrifugal winds.  相似文献   

3.
We report the spectral measurement of GRS 1915+105 in the hard X-ray energy band of 20–140keV. The observations were made on March 30th, 1997 during a quiescent phase of the source. We discuss the mechanism of emission of hard X-ray photons and the evolution of the spectrum by comparing the data with earlier measurements and an axiomatic model for the X-ray source.  相似文献   

4.
The spectral and temporal measurements in the hard X-ray region between 20-200 keV not only determines the extended behaviour of thermal X-ray spectrum below 10 keV but also provide a unique insight into the non-thermal processes in relativistic astrophysical plasma. From our present understanding of the X-ray sources, a significant fluxin the 20-200 keV band is expected from a variety of astrophysical phenomena, however, the available spectral data on the galactic and extragalactic X-ray source is very limited. This is mainly due to the fact that sensitivity of the detector systems used for earlier measurements was relatively poor. Since 1997, we have been carrying out a programme of hard X-ray observations galactic and extragalactic sources, in the 20-200 keV energy band using a highly sensitive balloon borne experiment. The X-ray telescope consists of three modules of large area scintillation counters specially configured in the back-to-back geometry and have a combined sensitivity of ∼ 10-6 ph cm-2 s-1 keV-1 for an on-source observations of 3 hrs. A total of 30 hours of ceiling data above an altitude of 3 mbar has been collected in 4 successful balloon flights from Hyderabad, India. Almost a dozen galactic and extragalactic X-ray sources were targeted and tracked during these observations. A positive detection was made in each case and in some cases the observed spectra extended right up to 150 keV. A brief account of the observed spectral and temporal features on some of the sources along with accurate measurement of diffuse background spectrum and a weak gamma ray burst will be presented in the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2–18 keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian satellite IRS-P3 during 1998 June 2nd–10th. The X-ray flux of the source in the main outburst decreased exponentially during the period of observation. No large amplitude short-term variability in the intensity is detected from the source. The power density spectrum obtained from the timing analysis of the data shows no indication of any quasi-periodic oscillations in 0.002–0.5 Hz band. The hardness ratio i.e. the ratio of counts in 6–18 keV to 2–6 keV band, indicates that the X-ray spectrum is soft with spectral index >2. From the similarities of the X-ray properties with those of other black hole transients, we conclude that the X-ray transient XTE J2012+381 is likely to be a black hole.  相似文献   

6.
Details of the discovery (in February 2004) and results of subsequent (in 2004–2009) INTEGRAL observations of the transient X-ray burster IGR J17380-3749 (IGR J17379-3747) are presented. Over the period of its observations, the INTEGRAL observatory recorded two hard X-ray flares and one type I X-ray burst from the source, which allowed the nature of IGR J17380-3749 to be determined. The burster radiation spectrum during the flares was hard—a power law with a photon index α = 1.8–2.0 or bremsstrahlung corresponding to a plasma with a temperature kT = 90–140 keV. The spectral shape at the flare peaks turned out to be the same, despite a more than twofold difference in flux (the peak flux recorded in the energy range 18–100 keV reached ∼20 mCrab). The upper limit on the flux from the source in its quiescent (off) state in the range of 18–40 keV was 0.15 mCrab (3σ).  相似文献   

7.
The observations of the black hole binary Cygnus X-l were made in the energy band of 20–100keV with a balloon-borne Xenon-filled multiwire proportional counter telescope on 5th April 1992. Timing analysis of the data revealed the presence of Quasi-Periodic Oscillations (QPO) in the hard X-ray emission from the source. The QPO feature in the power density spectrum is broad with a peak at a frequency of 0.06 Hz. This result is compared with similar reports of QPOs in Cyg X-l in soft and hard X-rays. Short time scale random intensity variations in the X-ray light curve are described with a shot noise model.  相似文献   

8.
Balloon observations of the X-ray source Sco X-1 carried out in November 1978 have revealed a thermal spectrum withkT?7 keV in the 20–60 keV energy band. In addition, there was evidence of a high energy component, possibly variable, above ~50 keV. The spectral form of this component could not be determined but was hard with a 60 keV flux of ~10?4 photons (keV cm2 s)?1.  相似文献   

9.
The Solar Maximum Mission Gamma Ray Experiment (SMM GRE) utilizes an actively shielded, multicrystal scintillation spectrometer to measure the flux of solar gamma rays. The instrument provides a 476-channel pulse height spectrum (with energy resolution of 7% at 662 keV) every 16.38 s over the energy range 0.3–9 MeV. Higher time resolution (2 s) is available in three windows between 3.5 and 6.5 MeV to study prompt gamma ray line emission at 4.4 and 6.1 MeV. Gamma ray spectral analysis can be extended to 15 MeV on command. Photons in the energy band from 300–350 keV are recorded with a time resolution of 64 ms. A high energy configuration also gives the spectrum of photons in the energy range from 10–100 MeV and the flux of neutrons 20 MeV. Both have a time resolution of 2 s. Auxiliary X-ray detectors will provide spectra with 1-sec time resolution over the energy range of 10–140 keV. The instrument is designed to measure the intensity, energy, and Doppler shift of narrow gamma ray lines as well as the intensity of extremely broadened lines and the photon continuum. The main objective is to use this time and spectral information from both nuclear gamma ray lines and the photon continuum in a direct study of the dynamics of the solar flare/particle acceleration phenomena.  相似文献   

10.
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a γ-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (∼300 ks) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20–40 keV flux of 1.1±0.3 mCrab (5.9 (±1.6) ×10−12 erg cm−2 s−1), a 40–100 keV upper limit of 1.5 mCrab (9.5×10−12 erg cm−2 s−1), and typical radio flux densities of ∼25 mJy at 5 GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.  相似文献   

11.
The “Fast X-ray Monitor” (BRM) instrument operated in the complex of the scientific instruments onboard the CORONAS-PHOTON satellite from February 19, 2009, until December 1, 2009. The instrument is intended for the registration of the hard X-ray radiation of solar flares in the 20–600 keV energy range in six differential energy channels (20–30, 30–40, 40–50, 50–70, 70–130, and 130–600 keV) with temporal resolution to 1 ms. In the instrument, a detector based on the YAP: Ce scintillator is used; this detector is 70 mm in diameter and 10 mm thick (the decay time is about 28 ns). For the decrease of the back-ground charge of the detector, the collimator limiting the angle of view of the instrument of value 12° is mounted over the scintillator. The effective area of the detector amounts to 27.7 cm2 (at the X-ray radiation energy 80 keV), and the dead time of the detector is 1 μs. Over the operation onboard the CORONAS-PHOTON satellite, the BRM instrument has registered gamma ray burst series and, perhaps, one solar flare of the class C1.3 on October 26, 2009.  相似文献   

12.
13.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

14.
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3–20 keV energy range were fitted ∼6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at ∼6.4 keV in the restricted energy range of 0.3–10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.  相似文献   

15.
The Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) X-ray data base (February 2002 – May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularized inversion technique, we determine the mean electron flux distribution from count spectra for a selection of events with flat photon spectra in the 15 – 20 keV energy range. Such spectral behavior is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range (e.g., a low-energy cutoff in the mean electron spectra of nonthemal particles). We have found 18 cases that exhibit a statistically significant local minimum (a dip) in the range of 13 – 19 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction is applied, all low-energy cutoffs in the mean electron spectrum are removed, and hence the low-energy cutoffs in the mean electron spectrum of solar flares above ∼ 12 keV cannot be viewed as real features. If low-energy cutoffs exist in the mean electron spectra, their energies should be less than ∼ 12 keV.  相似文献   

16.
Diffuse cosmic X-rays in the energy range 20–125 keV were measured in four balloon flights from Hyderabad, India during 1968–70 using almost identical X-ray telescopes mounted on oriented platforms. The results from these flights show that the spectrum of the diffuse cosmic X-rays can be represented by the form dN/dE=29E –2.1±0.3 photons/(cm2 sr s keV) in 20–125 keV interval after corrections for photoelectric absorption and Compton scattering effects in the atmosphere. The best fit spectrum of all published results in the energy interval 20–200 keV can be represented by the form dN/dE=36E –2.1±0.1 photons/(cm2 sr s keV) after similar corrections are effected, and there is no need for a change of spectral index in this energy interval. The intensity at 20 keV obtained from the above spectrum agrees well with that given by the spectral form dN/dE=10E –1.7±0.1 photons/(cm2 sr s keV) in the energy interval 1–20 keV in several rocket experiments. Therefore it is concluded that if there is a break in the spectrum, it occurs between 10 and 20 keV with a change of spectral index by about 0.5, or the index is continuously changing from 1.7±0.1 to 2.1±0.1 in 10–20 keV interval. The implications of the results are briefly discussed.  相似文献   

17.
The black hole candidate Cyg X-1 was observed in ultra low state on march 30, 1997 using Large Area Scintillation counter Experiment (LASE) in the hard X-ray energy region of 20–180 keV. During the 30 minute exposure a combined signal of 68 sigma was obtained, however, the measured flux at 50 keV was lower by a factor of 2 than the minimum flux reported so far. Using the recent orbital ephemeris of the source, our snap-shot observations were made at ϕ5.6 = 0.915, which corresponds to the binary minimum revealed by the ASM light curves. The daily average data from the BATSE detectors give the source intensity level to be higher by a factor of 5. Very low flux values measured in the present experiment suggest that the hard X-ray source may have been partially occulted by the primary companion during its transit near the X-ray minimum.  相似文献   

18.
Experimental results on the intensity, energy spectrum and time variations in hard X-ray emission from Cyg X-1 based on a balloon observation made on 1971, April 6 from Hyderabad (India) are described. The average energy spectrum of Cyg X-1 in the 22–154 keV interval on 1971 April 6 is best represented by a power law dN/dE=(5.41±1.53)E –(1.92±0.10) photons cm–2s–1 keV–1 which is in very good agreement with the spectrum of Cyg X-1 derived from an earlier observation made by us on 1969 April 16 in the 25–151 keV band and given by dN/dE=(3.54±2.44)E –(1.89±0.22) photons cm–2s–1 keV–1. A thermal bremsstrahlung spectrum fails to give a good fit over the entire energy range for both the observations. Comparison with the observations of other investigators shows that almost all balloon experiments consistently give a spectrum of E –2, while below 20 keV the spectrum varies fromE –1.7 toE –5. There is some indication of a break in the Cyg X-1 spectrum around 20 keV. Spectral analysis of data in different time intervals for the 1971 April 6 flight demonstrates that while the source intensity varies over time scales of a few minutes, there is no appreciable variation in the spectral slope. Analysis of various hard X-ray observations for long term variations shows that over a period of about a week the intensity of Cyg X-1 varies upto a factor of four. The binary model proposed by Dolan is examined and the difficulties in explaining the observed features of Cyg X-1 by this model are pointed out.  相似文献   

19.
Measurements have been made on the cosmic gamma rays of energy between 0.25 and 4.2 MeV from a balloon experiment made near the geomagnetic equator using a collimated 7.6 cm×7.6 cm NaI(T1) crystal assembly. The depth-intensity curves obtained were used to estimate the contribution due to the diffuse cosmic gamma rays in the above energy interval; an unfolding of the counting rates was then performed to obtain the energy spectrum. It is found that a power law fitted to the present data points has a spectral index of –1.8±0.2. A critical examination is then made of all the observational data between 1 keV and 100 MeV to deduce information on the spectral shape in this energy region. Upper limits on low energy gamma ray fluxes from Sco X-1 and the Galactic centre region are also reported.  相似文献   

20.
The objective of this project is to develop and construct an innovative imaging system for nuclear medicine and molecular imaging that uses photon diffraction and is capable of generating 1–2 mm spatial resolution images in two or three dimensions. The proposed imaging system would be capable of detecting radiopharmaceuticals that emit 100–200 keV gamma rays which are typically used in diagnostic nuclear medicine and in molecular imaging. The system is expected to be optimized for the 140.6 keV gamma ray from a Tc-99m source, which is frequently used in nuclear medicine. This new system will focus the incoming gamma rays in a manner analogous to a magnifying glass focusing sunlight into a small focal point on a detector's sensitive area. Focusing gamma rays through photon diffraction has already been demonstrated with the construction of a diffraction lens telescope for astrophysics and a scaled-down lens for medical imaging, both developed at Argonne National Laboratory (ANL). In addition, spatial resolutions of 3 mm have been achieved with a prototype medical lens. The proposed imaging system would be comprised of an array of photon diffraction lenses tuned to diffract a specific gamma ray energy (within 100–200 keV) emitted by a common source. The properties of photon diffraction make it possible to diffract only one specific gamma ray energy at a time, which significantly reduces scattering background. The system should be sufficiently sensitive to the detection of small concentrations of radioactivity that can reveal potential tumor sites at their initial stages of development. Moreover, the system's sensitivity would eliminate the need for re-injecting a patient with more radiopharmaceutical if this patient underwent a prior nuclear imaging scan. Detection of a tumor site at its inception could allow for an earlier initiation of treatment and wider treatment options, which can potentially improve the chances for cure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号