首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study what dictates oxygen isotope equilibrium fractionation between inorganic carbonate and water during carbonate precipitation from aqueous solutions, a direct precipitation approach was used to synthesize witherite, and an overgrowth technique was used to synthesize aragonite. The experiments were conducted at 50 and 70°C by one- and two-step approaches, respectively, with a difference in the time of oxygen isotope exchange between dissolved carbonate and water before carbonate precipitation. The two-step approach involved sufficient time to achieve oxygen isotope equilibrium between dissolved carbonate and water, whereas the one-step approach did not. The measured witherite-water fractionations are systematically lower than the aragonite-water fractionations regardless of exchange time between dissolved carbonate and water, pointing to cation effect on oxygen isotope partitioning between the barium and calcium carbonates when precipitating them from the solutions. The two-step approach experiments provide the equilibrium fractionations between the precipitated carbonates and water, whereas the one-step experiments do not. The present experiments show that approaching equilibrium oxygen isotope fractionation between precipitated carbonate and water proceeds via the following two processes:
1.
Oxygen isotope exchange between [CO3]2− and H2O:
(1)  相似文献   

2.
In light of recent studies that show oxygen isotope fractionation in carbonate minerals to be a function of HCO3 and CO32− concentrations, the oxygen isotope fractionation and exchange between water and components of the carbonic acid system (HCO3, CO32−, and CO2(aq)) were investigated at 15°, 25°, and 40°C. To investigate oxygen isotope exchange between HCO3, CO32−, and H2O, NaHCO3 solutions were prepared and the pH was adjusted over a range of 2 to 12 by the addition of small amounts of HCl or NaOH. After thermal, chemical, and isotopic equilibrium was attained, BaCl2 was added to the NaHCO3 solutions. This resulted in immediate BaCO3 precipitation; thus, recording the isotopic composition of the dissolved inorganic carbon (DIC). Data from experiments at 15°, 25°, and 40°C (1 atm) show that the oxygen isotope fractionation between HCO3 and H2O as a function of temperature is governed by the equation:
  相似文献   

3.
Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO2 degassing, passive CO2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±∼0.13‰ and thus insignificant. Because the presence of Mg2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO3 solutions under these experimental conditions, the influence of the total Mg2+ concentration (up to ∼0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg2+ but a noticeable isotope salt effect was observed at ∼0.9 molal total Mg2+.On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C:
1000lnαaragonite-water=17.88±0.13(103/T)-31.14±0.46  相似文献   

4.
Phosphoric acid digestion has been used for oxygen- and carbon-isotope analysis of carbonate minerals since 1950, and was recently established as a method for carbonate ‘clumped isotope’ analysis. The CO2 recovered from this reaction has an oxygen isotope composition substantially different from reactant carbonate, by an amount that varies with temperature of reaction and carbonate chemistry. Here, we present a theoretical model of the kinetic isotope effects associated with phosphoric acid digestion of carbonates, based on structural arguments that the key step in the reaction is disproportionation of H2CO3 reaction intermediary. We test that model against previous experimental constraints on the magnitudes and temperature dependences of these oxygen isotope fractionations, and against new experimental determinations of the fractionation of 13C-18O-containing isotopologues (‘clumped’ isotopic species). Our model predicts that the isotope fractionations associated with phosphoric acid digestion of carbonates at 25 °C are 10.72‰, 0.220‰, 0.137‰, 0.593‰ for, respectively, 18O/16O ratios (1000 lnα) and three indices that measure proportions of multiply-substituted isotopologues . We also predict that oxygen isotope fractionations follow the mass dependence exponent, λ of 0.5281 (where ). These predictions compare favorably to independent experimental constraints for phosphoric acid digestion of calcite, including our new data for fractionations of 13C-18O bonds (the measured change in Δ47 = 0.23‰) during phosphoric acid digestion of calcite at 25 °C.We have also attempted to evaluate the effect of carbonate cation compositions on phosphoric acid digestion fractionations using cluster models in which disproportionating H2CO3 interacts with adjacent cations. These models underestimate the magnitude of isotope fractionations and so must be regarded as unsucsessful, but do reproduce the general trend of variations and temperature dependences of oxygen isotope acid digestion fractionations among different carbonate minerals. We suggest these results present a useful starting point for future, more sophisticated models of the reacting carbonate/acid interface. Examinations of these theoretical predictions and available experimental data suggest cation radius is the most important factor governing the variations of isotope fractionation among different carbonate minerals. We predict a negative correlation between acid digestion fractionation of oxygen isotopes and of 13C-18O doubly-substituted isotopologues, and use this relationship to estimate the acid digestion fractionation of for different carbonate minerals. Combined with previous theoretical evaluations of 13C-18O clumping effects in carbonate minerals, this enables us to predict the temperature calibration relationship for different carbonate clumped isotope thermometers (witherite, calcite, aragonite, dolomite and magnesite), and to compare these predictions with available experimental determinations. The success of our models in capturing several of the features of isotope fractionation during acid digestion supports our hypothesis that phosphoric acid digestion of carbonate minerals involves disproportionation of transition state structures containing H2CO3.  相似文献   

5.
Calcium isotope fractionation in calcite and aragonite   总被引:1,自引:0,他引:1  
Calcium isotope fractionation was measured on skeletal aragonite and calcite from different marine biota and on inorganic calcite. Precipitation temperatures ranged from 0 to 28°C. Calcium isotope fractionation shows a temperature dependence in accordance with previous observations: 1000 · ln(αcc) = −1.4 + 0.021 · T (°C) for calcite and 1000 · ln(αar) = −1.9 + 0.017 · T (°C) for aragonite. Within uncertainty the temperature slopes are identical for the two polymorphs. However, at all temperatures calcium isotopes are more fractionated in aragonite than in calcite. The offset in δ44/40Ca is about 0.6‰. The underlying mechanism for this offset may be related to the different coordination numbers and bond strengths of the calcium ions in calcite and aragonite crystals, or to different Ca reaction behavior at the solid-liquid interface. Recently, the observed temperature dependence of the Ca isotope fractionation was explained quantitatively by the temperature control on precipitation rates of calcium carbonates in an experimental setting (Lemarchand et al., 2004). We show that this mechanism can in principle also be applied to CaCO3 precipitation in natural environments in normal marine settings. Following this model, Ca isotope fractionation in marine Ca carbonates is primarily controlled by precipitation rates. On the other hand the larger Ca isotope fractionation of aragonite compared to calcite can not be explained by different precipitation rates. The rate control model of Ca isotope fractionation predicts a strong dependence of the Ca isotopic composition of carbonates on ambient CO32− concentration. While this model is in general accordance with our observations in marine carbonates, cultured specimens of the planktic foraminifer Orbulina universa show no dependence of Ca-isotope fractionation on the ambient CO32− concentration. The latter observation implies that the carbonate chemistry in the calcifying vesicles of the foraminifer is independent from the ambient carbonate ion concentration of the surrounding water.  相似文献   

6.
The intramolecular kinetic oxygen isotope fractionation between CO2 and CO32− during reaction of phosphoric acid with natural smithsonite (ZnCO3) and cerussite (PbCO3) has been determined between 25 and 72°C. While cerussite decomposes in phosphoric acid within a few hours at 25°C, smithsonite reacts very slowly with the acid at 25°C providing yields of CO2 < 25% after 2 weeks. The low yields result in a low precision for oxygen isotope measurements of the acid-liberated CO2 (±1.65‰, 1σ, n = 9). The yield and reproducibility of oxygen isotope values of the acid-liberated CO2 from smithsonite can be improved, the latter to ∼±0.15‰, by increasing the reaction temperature to 50°C for 12 h or to 72°C for 1 h. Our new phosphoric acid fractionation factor for natural cerussite at 25°C deviates significantly from a previously published value on synthetic material. The temperature dependence of the oxygen isotope factionation factor, α between acid-liberated CO2 and carbonate at 25 to 72°C is given by the following equations
  相似文献   

7.
The influence of NaCl, CaCl2, and dissolved minerals on the oxygen isotope fractionation in mineral-water systems at high pressure and high temperature was studied experimentally. The salt effects of NaCl (up to 37 molal) and 5-molal CaCl2 on the oxygen isotope fractionation between quartz and water and between calcite and water were measured at 5 and 15 kbar at temperatures from 300 to 750°C. CaCl2 has a larger influence than NaCl on the isotopic fractionation between quartz and water. Although NaCl systematically changes the isotopic fractionation between quartz and water, it has no influence on the isotopic fractionation between calcite and water. This difference in the apparent oxygen isotope salt effects of NaCl must relate to the use of different minerals as reference phases. The term oxygen isotope salt effect is expanded here to encompass the effects of dissolved minerals on the fractionations between minerals and aqueous fluids. The oxygen isotope salt effects of dissolved quartz, calcite, and phlogopite at 15 kbar and 750°C were measured in the three-phase systems quartz-calcite-water and phlogopite-calcite-water. Under these conditions, the oxygen isotope salt effects of the three dissolved minerals range from ∼0.7 to 2.1‰. In both three-phase hydrothermal systems, the equilibrium fractionation factors between the pairs of minerals are the same as those obtained by anhydrous direct exchange between each pair of minerals, proving that the use of carbonate as exchange medium provides correct isotopic fractionations for a mineral pair.When the oxygen isotope salt effects of two minerals are different, the use of water as an indirect exchange medium will give erroneous fractionations between the two minerals. The isotope salt effect of a dissolved mineral is also the main reason for the observation that the experimentally calibrated oxygen isotope fractionations between a mineral and water are systematically 1.5 to 2‰ more positive than the results of theoretical calculations. Dissolved minerals greatly affect the isotopic fractionation in mineral-water systems at high pressure and high temperature. If the presence of a solute changes the solubility of a mineral, the real oxygen isotope salt effect of the solute at high pressure and high temperature cannot be correctly derived by using the mineral as reference phase.  相似文献   

8.
Aragonite was precipitated in the laboratory at 25 °C in isotopic equilibrium with Na-Ca-Mg-Cl-CO3 solutions at two different pH values (i.e., pH = ∼8.2 and ∼10.8) by the constant addition method. On the basis of the oxygen isotope composition of the aragonite precipitates, it was demonstrated that the equilibrium aragonite-water fractionation factor is independent of the pH of the parent solution and equal to:
1000lnα(aragonite-H2O)=29.12±0.09  相似文献   

9.
Equilibrium and kinetic Fe isotope fractionation between aqueous ferrous and ferric species measured over a range of chloride concentrations (0, 11, 110 mM Cl) and at two temperatures (0 and 22°C) indicate that Fe isotope fractionation is a function of temperature, but independent of chloride contents over the range studied. Using 57Fe-enriched tracer experiments the kinetics of isotopic exchange can be fit by a second-order rate equation, or a first-order equation with respect to both ferrous and ferric iron. The exchange is rapid at 22°C, ∼60-80% complete within 5 seconds, whereas at 0°C, exchange rates are about an order of magnitude slower. Isotopic exchange rates vary with chloride contents, where ferrous-ferric isotope exchange rates were ∼25 to 40% slower in the 11 mM HCl solution compared to the 0 mM Cl (∼10 mM HNO3) solutions; isotope exchange rates are comparable in the 0 and 110 mM Cl solutions.The average measured equilibrium isotope fractionations, ΔFe(III)-Fe(II), in 0, 11, and 111 mM Cl solutions at 22°C are identical within experimental error at +2.76±0.09, +2.87±0.22, and +2.76±0.06 ‰, respectively. This is very similar to the value measured by Johnson et al. (2002a) in dilute HCl solutions. At 0°C, the average measured ΔFe(III)-Fe(II) fractionations are +3.25±0.38, +3.51±0.14 and +3.56±0.16 ‰ for 0, 11, and 111 mM Cl solutions. Assessment of the effects of partial re-equilibration on isotope fractionation during species separation suggests that the measured isotope fractionations are on average too low by ∼0.20 ‰ and ∼0.13 ‰ for the 22°C and 0°C experiments, respectively. Using corrected fractionation factors, we can define the temperature dependence of the isotope fractionation from 0°C to 22°C as: where the isotopic fractionation is independent of Cl contents over the range used in these experiments. These results confirm that the Fe(III)-Fe(II) fractionation is approximately half that predicted from spectroscopic data, and suggests that, at least in moderate Cl contents, the isotopic fractionation is relatively insensitive to Fe-Cl speciation.  相似文献   

10.
We report results of experiments constraining oxygen isotope fractionations between CO2 vapor and Na-rich melilitic melt at 1 bar and 1250 and 1400°C. The fractionation factor constrained by bracketed experiments, 1000.lnαCO2-Na melilitic melt, is 2.65±0.25 ‰ (±2σ; n=92) at 1250°C and 2.16±0.16 ‰ (2σ; n=16) at 1400°C. These values are independent of Na content over the range investigated (7.5 to 13.0 wt. % Na2O). We combine these data with the known reduced partition function ratio of CO2 to obtain an equation describing the reduced partition function ratio of Na-rich melilite melt as a function of temperature. We also fit previously measured CO2-melt or -glass fractionations to obtain temperature-dependent reduced partition function ratios for all experimentally studied melts and glasses (including silica, rhyolite, albite, anorthite, Na-rich melilite, and basalt). The systematics of these data suggest that reduced partition function ratios of silicate melts can be approximated either by using the Garlick index (a measure of the polymerization of the melt) or by describing melts as mixtures of normative minerals or equivalent melt compositions. These systematics suggest oxygen isotope fractionation between basalt and olivine at 1300°C of approximately 0.4 to 0.5‰, consistent with most (but not all) basalt glass-olivine fractionations measured in terrestrial and lunar basalts.  相似文献   

11.
The partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure. Attainment of carbon isotope equilibrium in CO2-calcite runs was proven by achieving the same fractionation from isotopically opposite directions. The resultant CO2-calcite fractionation curve for carbon differs from Bottinga's calculation by 1.2 and confirms recent experiments of Chacko et al. and Mattey et al. In CO2-graphite experiments equilibrium fractions were extrapolated by applying the partial-exchange technique of Northrop and Clayton and by optimizing the contribution of surface reaction in graphite. CO2-graphite fractionations at temperatures up to 800 °C are in fair agreement with Bottinga's calculation, but yield a surprisingly high fractionation of 5 at upper mantle temperatures. The combination of CO2-calcite (carbon) and CO2-graphite fractionation results in a new experimentally determined calcite-grapite fractionation curve, expressed by the equation:
  相似文献   

12.
Rhodochrosite crystals were precipitated from Na-Mn-Cl-HCO3 parent solutions following passive, forced and combined passive-to-forced CO2 degassing methods. Forced and combined passive-to-forced CO2 degassing produced rhodochrosite crystals with a small non-equilibrium oxygen isotope effect whereas passive CO2 degassing protocols yielded rhodochrosite in apparent isotopic equilibrium with water. On the basis of the apparent equilibrium isotopic data, a new temperature-dependent relation is proposed for the oxygen isotope fractionation between rhodochrosite and water between 10 and 40 °C:
1000lnαrhodochrosite-water=17.84±0.18(103/T)-30.24±0.62  相似文献   

13.
The apparent inconsistency in calcite-water fractionation does occur between the arithmetic combination of Zhou and Zheng [Zhou G.-T., and Zheng Y.-F. (2003) An experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures. Geochim. Cosmochim. Acta67, 387-399] and the experimental determination of Zhou and Zheng [Zhou G.-T., and Zheng Y.-F. (2005) Effect of polymorphic transition on oxygen isotope fractionation between aragonite, calcite and water: a low-temperature experimental study. Am. Mineral90, 1121-1130]. To resolve this issue is to acknowledge whether or not the isotope salt effect of dissolved minerals would occur on oxygen isotope exchange between water and the minerals of interest. The question is whether or not a term of mineral-water interaction should be taken into account when calculating mineral-water 103ln α factors by an arithmetic combination between theoretical 103ln β factors for mineral and water, respectively. The hydrothermal experiments of Hu and Clayton [Hu G.-X., and Clayton R.N. (2003) Oxygen isotope salt effects at high pressure and high temperature, and the calibration of oxygen isotope geothermometers. Geochim. Cosmochim. Acta67, 3227-3246] demonstrate the absence of isotope salt effect on the oxygen isotope fractionation between calcite and water, and this abnormal behavior reasonably explains the so-called inconsistency in the calcite-water fractionations of Zhou and Zheng (2003, 2005). We argue that the mineral-water correction is still necessary for calculation of fractionations in mineral-water systems. New experimental data for oxygen isotope fractionations involving dolomite and cerussite are consistent with the calculations of Zheng [Zheng Y.-F. (1999a) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem. J.33, 109-126], but also shed light on the assumptions used in modifying the increment method. We argue that the modified increment method has developed into a theoretical mean of predictive power for calculation of oxygen isotope fractionation factors for crystalline minerals of geochemical interest.  相似文献   

14.
The carbon isotopic fractionation between CO2 vapour and sodamelilite (NaCaAlSi2O7) melt over a range of pressures and temperatures has been investigated using solid-media piston-cylinder high pressure apparatus. Ag2C2O4 was the source of CO2 and experimental oxygen fugacity was buffered at hematite-magnetite by the double capsule technique. The abundance and isotopic composition of carbon dissolved in sodamelilite (SM) glass were determined by stepped heating and the 13C of coexisting vapour was determined directly by capsule piercing. CO2 solubility in SM displays a complex behavior with temperature. At pressures up to 10 kbars CO2 dissolves in SM to form carbonate ion complexes and the solubility data suggest slight negative temperature dependence. Above 20 kbars CO2 reacts with SM to form immiscible Na-rich silicate and Ca-rich carbonate melts and CO2 solubility in Na-enriched silicate melt rises with increasing temperature above the liquidus. Measured values for carbon isotopic fractionation between CO2 vapour and carbonate ions dissoived in sodamelilite melt at 1200°–1400° C and 5–30 kbars average 2.4±0.2, favouring13C enrichment in CO2 vapour. The results are maxima and are independent of pressure and temperature. Similar values of 2 are obtained for the carbon isotopic fractionation between CO2 vapour and carbonate melts at 1300°–1400° C and 20–30 kbars.  相似文献   

15.
Direct oxygen isotope fractionation between cassiterite and calcite has been investigated experimentally at 15 kbar with temperature ranging from 800 to 1000°C. Combined with the quartz-calcite fractionation measured with the same technique (Clayton et al., 1989), the calcite-cassiterite and quartz-cassiterite oxygen isotope fractionations can be expressed as:
  相似文献   

16.
Five lizardite-chrysotile type serpentinites from California, Guatemala and the Dominican Republic show oxygen isotope fractionations of 15.1 to 12.9 per mil between coexisting serpentine and magnetite (O18 magnetite=–7.6 to –4.6 per mil relative to SMOW). Nine antigorites (mainly from Vermont and S. E. Pennsylvania) show distinctly smaller fractionations of 8.7 to 4.8 per mil (O18 magnetite=–2.6 to +1.7 per mil). Two lizardite and chrysotile serpentinites dredged from the Mid-Atlantic Ridge exhibit fractionations of 10.0 and 12.4 per mil (O18 magnetite=–6.8 and –7.9 per mil, respectively), whereas an oceanic antigorite shows a value of 8.2 per mil (O18 magnetite=–6.2). These data all clearly indicate that the antigorites formed at higher temperatures than the chrysotilelizardites. Electron microprobe analyses of magnetites from the above samples show that they are chemically homogeneous and essentially pure Fe3O2. However, some magnetites from certain other samples that show a wide variation of Cr content also give very erratic oxygen isotopic results, suggesting non-equilibrium. An approximate serpentine-magnetite geothermometer curve was constructed by (1) extrapolation of observed O18 fractionations between coexisting chlorites and Fe-Ti oxides in low-grade pelitic schists whose isotopic temperatures are known from the quartz-muscovite O18 geothermometer, and (2) estimates of the O18 fractionation factor between chlorite and serpentine (assumed to be equal to unity). This serpentine-magnetite geothermometer suggests approximate equilibrium temperatures as follows: continental lizardite-chrysotile, 85° to 115° C; oceanic lizardite and chrysotile, 130° C and 185° C, respectively; oceanic antigorite, 235° C; and continental antigorites, 220° to 460° C.Contribution No. 2029 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.  相似文献   

17.
Stable oxygen isotopic fractionation during inorganic calcite precipitation was experimentally studied by spontaneous precipitation at various pH (8.3 < pH < 10.5), precipitation rates (1.8 < log R < 4.4 μmol m− 2 h− 1) and temperatures (5, 25, and 40 °C) using the CO2 diffusion technique.The results show that the apparent stable oxygen isotopic fractionation factor between calcite and water (αcalcite–water) is affected by temperature, the pH of the solution, and the precipitation rate of calcite. Isotopic equilibrium is not maintained during spontaneous precipitation from the solution. Under isotopic non-equilibrium conditions, at a constant temperature and precipitation rate, apparent 1000lnαcalcite–water decreases with increasing pH of the solution. If the temperature and pH are held constant, apparent 1000lnαcalcite–water values decrease with elevated precipitation rates of calcite. At pH = 8.3, oxygen isotopic fractionation between inorganically precipitated calcite and water as a function of the precipitation rate (R) can be described by the expressions
at 5, 25, and 40 °C, respectively.The impact of precipitation rate on 1000lnαcalcite–water value in our experiments clearly indicates a kinetic effect on oxygen isotopic fractionation during calcite precipitation from aqueous solution, even if calcite precipitated slowly from aqueous solution at the given temperature range. Our results support Coplen's work [Coplen T. B. (2007) Calibration of the calcite–water oxygen isotope geothermometer at Devils Hole, Nevada, a natural laboratory. Geochim. Cosmochim. Acta 71, 3948–3957], which indicates that the equilibrium oxygen isotopic fractionation factor might be greater than the commonly accepted value.  相似文献   

18.
The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation state and the total [Ca2+]:[CO32−] ratio of the experimental solutions was found to have a determining effect on the amount and abundance of calcite overgrowths as well as the extent of replacement observed within the crystals. The replacement process was accompanied by progressive formation of cracks and pores within the calcite, which led to extended fracturing of the initial aragonite. The overall shape and morphology of the parent aragonite crystal were preserved. The replaced regions were identified with scanning electron microscopy and Raman spectroscopy.Experiments using carbonate solutions prepared with water enriched in 18O (97%) were also performed in order to trace the course of this replacement process. The incorporation of the heavier oxygen isotope in the carbonate molecule within the calcite replacements was monitored with Raman spectroscopy. The heterogeneous distribution of 18O in the reaction products required a separate study of the kinetics of isotopic equilibration within the fluid to obtain a better understanding of the 18O distribution in the calcite replacement. An activation energy of 109 kJ/mol was calculated for the exchange of oxygen isotopes between [C16O32−]aq and [H218O] and the time for oxygen isotope exchange in the fluid at 200 °C was estimated at ∼0.9 s. Given the exchange rate, analyses of the run products imply that the oxygen isotope composition in the calcite product is partly inherited from the oxygen isotope composition of the aragonite parent during the replacement process and is dependent on access of the fluid to the reaction interface rather than equilibration time. The aragonite to calcite fluid-mediated transformation is described by a coupled dissolution-reprecipitation mechanism, where aragonite dissolution is coupled to the precipitation of calcite at an inwardly moving reaction interface.  相似文献   

19.
Stable oxygen and carbon isotopefractionation during the experimental formation ofordered norsethite (BaMg[CO3]2) from thereaction of anhydrous BaCO3 (witherite) withrelatively low concentrated sodium-magnesiumbicarbonate solutions has been studied between20° and 135 °C. In the investigatedtemperature range, 18O and 13C are enrichedin norsethite with respect to water and gaseous carbondioxide, respectively. Whereas 18O/16Opartitioning is intermediate between those of theBaCO3–H2O and MgCO3–H2O systems,13C/12C partitioning is more similar to thatfor BaCO3–CO2. Between 20° and90°C, the temperature dependences of the18O/16O and 13C/12C fractionationfactors are represented by the equations (T in °K):103 ln BaMg[CO3]2-H2O = 2.83 106T--2.85, and 103lnBaMg[CO3]2-CO2(gas) = 1.78 106T--10.16. The later equation considers carbon isotope fractionationbetween the dissolved carbonate ion and carbon dioxide measured by Halaset al. (1997). Under standard state conditions (25 °C) the fractionation factors in the system BaMg[CO3]2-CO2-H2O are: Oxygen isotopes: BaMg(CO3)2-H2O = 1.02941, BaMg(CO3)2-OH-(aq) = 1.07059,BaMg(CO3)2-CO2(gas) = 0.98868, andBaMg(CO3)2-H2CO3 * = 0.98843; carbon isotopes:BaMg(CO3)2-CO2(gas) = 1.00992,BaMg(CO3)2-H2CO3 * = 1.01099,BaMg(CO3)2-HCO3 - = 1.00194,BaMg(CO3)2-CO3 2- = 1.00491 or 1.00150.The spontaneous precipitation of aBaMg[CO3]2 gel at 20 °C,followed by the alteration of the products at20° or 60°C for 31 days,demonstrated isotope exchange reactions betweensolids and mother solutions dueto recrystallization. Isotope equilibrium, wasnot reached within run time.  相似文献   

20.
The experiments were conducted in the open CO2 system to find out the equilibrium fractionation between the carbonate ion and CO2(g). The existence of isotopic equilibrium was checked using the two-direction approach by passing the CO2−N2 gases with different δ13C compositions (− 1.5‰ and − 23‰) through the carbonate solution with δ13C = − 4.2‰. The ΔCO3T2−−CO2(g) equilibrium fractionation is given as 6.03 ± 0.17‰ at 25 °C. Discussion is provided about the significance of carbonate complexing in determination of ΔCO3T2−−CO2(g) and ΔHCO3T−CO2(g) fractionations. Finally, an isotope numerical model of flow and kinetics of hydration and dehydroxylation is built to predict the isotopic behaviour of the system with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号