首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The paper presents pioneering data on the composition, texture, and crystal structure of molybdenite from various types of molybdenum mineralization at the Bystrinsky Cu–Au–Fe porphyry–skarn deposit in the eastern Transbaikal region, Russia. The data were obtained using electron microprobe analysis (EMPA), laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS), and high-resolution transmission electron microscopy (HRTEM). Molybdenite found at the deposit in skarn, sulfide-poor quartz veins, and quartz–feldspar alteration markedly differs in the concentrations of trace elements determined by their species in the mineral, as well as in its structural features. Molybdenite-2H from skarn associated with phyllosilicates occurs as ultrafine crystals with uniform shape and texture; no dislocations or inclusions were found but amorphous silica was. The molybdenite composition is highly contrasting in the content and distribution of both structure-related (Re, W, and Se) and other (Mn, Co, Ni, Cu, Zn, As, Ag, Cd, Sb, Te, Ag, Pd, Au, Hg, Pb, and Bi) metals. In the sulfide-poor quartz veins, highly structurally heterogeneous (2H + 3R) molybdenite microcrystals with abundant defects (dislocations and volumetrically distributed inclusions) are associated with illite, goethite, and barite. Some single crystals are unique three-phase (2H + 3R polytypes + amorphous MoS2). The mineral has a low concentration of all trace elements, which are uniformly distributed. However, individual domains with uniquely high Pd, Te, Ni, Hg, and W concentrations caused by mineral inclusions are found in some grains. Molybdenite from quartz–feldspar alteration is characterized by low concentrations of all trace elements except for Re and Se, which enrich some domains of the grains. Our data indicate that the compositional and structural heterogeneity of molybdenite from the Bystrinsky deposit are its crucial features, which obviously correlate with the types of Mo mineralization.  相似文献   

2.
Synchrotron radiation has been used to collect Cu K-edge and Ag K-edge EXAFS from several tetrahedrite, (Cu,Ag)10(Zn,Fe,Cu)2Sb4S13, minerals. The results have been used to investigate the coordination environment of the Ag and Cu, and to determine which sites in the structure are occupied by silver atoms when they replace copper. The Ag EXAFS spectrum of a sample with high silver content reveals an interaction between silver and antimony which may explain the anomalous decrease in unit cell size found in natural tetrahedrites when the silver content increases beyond four atoms per unit formula.  相似文献   

3.
The interaction of freshly abraded surfaces of cuprite, Cu2O, with neutral or mildly alkaline aqueous solutions of diethyl or di-n-butyl dithiophosphate (DTP) has been investigated by means of conventional and synchrotron X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. It was confirmed that DTP adsorbs readily on Cu atoms in the surface layer of the mineral treated with solutions of the collector at pH values near 7 and 9 in the presence of air, and renders the surface hydrophobic. When cuprite is treated with relatively high concentrations of DTP for sufficiently long periods, collector can also be adsorbed as CuDTP, but the coverage does not exceed a thin layer of CuDTP on the adsorbed DTP monolayer, unlike the situation with Cu metal or chalcocite where a thick multilayer can be formed.  相似文献   

4.
Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.  相似文献   

5.
《Applied Geochemistry》2006,21(8):1259-1273
Grains of naturally oxidized arsenopyrite [FeAsS] collected from the oxidation zone in W-mine tailings were investigated, primarily using transmission electron microscopy. The grains are severely pitted and are surrounded by secondary minerals. The pitted nature of the grains is related to mechanisms governing the electrochemical oxidation of sulfide minerals, with prominent cusp-like features occurring at cathodic regions of the surface, and pits occurring at anodic regions. In general, the oxidation of arsenopyrite leads to the formation of an amorphous (or nanocrystalline) Fe–As–O-rich coating that contains small amounts of Si, Ca, Cu, Zn, Pb and Bi; nanoscale variation in the As, Pb, Bi and Zn contents of the coating was noted. Secondary Cu sulfides, thought to be chalcocite [Cu2S] and (or) djurleite [Cu31S16], occur as a layer (generally <500 nm thick) along the arsenopyrite grain boundary, and also within the coating as aggregates, and as layers that parallel the grain boundary. Although the precipitation of secondary Cu minerals along the grain boundary is a nanoscale feature, the process of formation is thought to be analogous to the supergene enrichment that occurs in weathered sulfide deposits. As the oxidation of arsenopyrite proceeds, layers and clusters of secondary Cu sulfides become isolated in the Fe–As–O coating. Secondary wulfenite [PbMoO4] and an unidentified crystalline Bi–Pb–As–O mineral occur in voids within the coating, suggesting that these minerals precipitated from the local pore-water. Small and variable amounts of W, Ca, Bi, As and Zn are associated with the wulfenite, and Zn, Fe and Ca are associated with the Bi–Pb–As–O mineral. Some of the wulfenite is in contact with inclusions of molybdenite [MoS2], suggesting that the oxidation of molybdenite in the presence of aqueous Pb(II) led to the formation of wulfenite. Mineralogical analyses at the nanoscale have improved the understanding of geochemical sources and sinks at this location. The results of this study indicate that the mineralogical controls on aqueous elemental concentrations at this tailings site are complex and are not predicted by thermodynamic calculations.  相似文献   

6.
In this paper we examine the influence of the development of supergene oxide and sulphide zones on the original hypogene geochemical patterns at the Berg deposit, British Columbia.The deposit, in the alpine zone of the Tahtsa Range, was logged (GEOLOG) and sampled in fourteen diamond drill holes along a N—S section and from outcrop where possible. Anomalous populations of major and trace elements were defined using log probability graphs and a sequential extraction (10% hydrochloric acid— ammonium oxalate — potassium chlorate/hydrochloric acid — nitric/perchloric acids) was used to study the distribution of elements between carbonate, oxide, sulphide and silicate phases.Core logs and assays show that primary ore minerals (chalcopyrite—molybdenite) extend from the outer part of the porphyry intrusion into the surrounding hornfels where the best grades of copper are found close to the intrusive contact. Maximum copper grades, however, result from development of a supergene enrichment blanket. Within the hypogene zone, principal lithogeochemical patterns reflect the differences in composition of the hornfels, originally intermediate to basic volcanics, and the intrusion, as well as the introduction of F and trace metals (Cu, Mo, Pb, Zn and Ag). Distribution of Ag is broadly comparable to that of Cu and Mo whereas anomalous Pb and Zn are present as peripheral haloes around the potential ore zones.Emergence of strongly acidic ground water and precipitation of iron oxides, indicate that leaching processes are active. Furthermore, although primary sulphides, associated with both their oxidation products and secondary sulphides, can still be found in surface samples, sequential extractions on drill core clearly indicate vertical redistribution of copper between oxide, carbonate and sulphide phases. Using ratios of metal concentrations to TiO2, the surface concentrations of trace metals can be compared with those at depth and the relative amount of enrichment or depletion can be quantified. In highly leached sites the absolute concentrations of Cu, Mn and Zn are low which is reflected in TiO2 ratios of <1. However, Mo, Pb and Ag are enriched at the same sites (TiO2 ratios >1). In areas where physical erosion exceeds leaching (topographic lows) primary sulphides co-exist with secondary sulphide and oxide minerals. Here Cu, Mo, Pb, Zn, Mn and Ag are enriched. Fluorine is relatively unaffected by the leaching process. It would appear signature for a cale alkaline Cu and Mo porphyry deposit in an area where outcrop was intensely leached.  相似文献   

7.
The overwhelming majority of porphyry Mo-Au-Cu deposits in the Urals are related to the low-K quartz diorite minor intrusions of the island-arc type, which were formed from Silurian Middle-Late Carboniferous. In the South Urals, the Cu/Mo ratio of ore decreases eastward along with enrichment in Re. At the same time, molybdenite is depleted in this metal in compliance with more sialic crust and potassium content in ore-bearing dioritic rocks. Quartz diorites at the highest-Re deposits contain 1–2 wt % K2O. At most Early-Middle Devonian deposits and occurrences of the western Tagil-Magnitogorsk-West Mugodzhary femic megazone, molybdenite is sporadic. The Re content in rocks was mainly determined using the kinetic method and to a lesser extent with ICP-MS. A Cameca SX-100 microprobe was also used for study of molybdenite. The Cu/Mo ratio of ore exceeds 600; the Mo content is commonly 1–15 ppm (occasionally up to 30 ppm and higher); the Re content is up to 0.01–0.04 ppm, sporadically increasing to 0.08–0.17 ppm. At the same time, the Re content in molybdenite often reaches 0.2–0.4 wt %. The highest Re concentration was established in the ore of the largest Mikheevsky deposit formed in the Late Devonian-Early Carboniferous and localized in the easternmost part of the East Ural sialic-femic megazone. The Re content in the orebodies of this deposit often reaches 0.2–0.5 ppm (up to 1.4–2.7 ppm) and 0.21 wt % in molybdenite. The average Mo grade of ore is 80 ppm and Cu/Mo ratio is 66. These data and Sr isotopic composition of ore-bearing granitoid and metasomatic rocks [(87Sr/86Sr)t = 0.7038–0.7051; (?Nd)t = 3–7] testify to the mantle source of matter with insignificant admixture of crustal material. The same is apparently valid for Re and Cu in contrast to Mo. This statement is corroborated by the inverse correlation between Cu/Mo and Mo/Re ratios in the ore. Fluid-crystal fractionation of ore-bearing dioritic rocks is accompanied by enrichment of ore in Mo and by decrease in Re content in molybdenite. In the Tarutino ore field, the pyrite-chalcopyrite mineralization gives way to the molybdenite mineralization in line with in-sequence intrusion of diorite with quartz-bearing groundmass and granodiorite porphyry. Because of increasing silica content in granitoids, the Re concentration in molybdenite commonly remains below 0.07 wt % as is noted at the rare deposits localized in the sialic megazones.  相似文献   

8.
An atomic level study of rhenium and radiogenic osmium in molybdenite   总被引:1,自引:0,他引:1  
Local atomic structures of Re and radiogenic Os in molybdenite from the Onganja mine, Namibia, were examined using X-ray absorption fine structure (XAFS). Rhenium LIII-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) show that the oxidation state of Re, the interatomic distances between Re and the neighboring atoms, and the coordination number of Re to S are very similar to those of Mo in molybdenite. The results confirm that Re is present as Re(IV) in the Mo site in molybdenite.Measurement of LIII-edge XANES and EXAFS of a minor concentration (8.55 ppm) of radiogenic Os was accomplished in fluorescence mode by removing the interfering X-rays from Re and other elements using a crystal analyzer system. The data indicate that the oxidation state of radiogenic Os is Os(III) and Os(IV) and clearly different from Os(II) in natural sulfide minerals, such as OsS2 (erlichmanite). XANES data also suggest that radiogenic Os does not form a secondary Os phase, such as OsS2 or Os metal, in molybdenite.EXAFS of radiogenic Os was successfully simulated assuming that Os is present in the Mo site in molybdenite. The data are consistent with the XANES data; Os does not form Os phases in molybdenite. The EXAFS simulation showed that the interatomic distance between Os and S is 2.27 Å, which is 0.12 Å smaller than the distances of Re-S and Mo-S (2.39 Å) in molybdenite. Similar valences and ionic sizes of Re and Mo in molybdenite support the fact that large amounts of Re can be incorporated into the Mo site as has been observed in previous studies, whereas the different properties of Os compared to Mo and Re suggested here support much lower abundance of common Os in molybdenite. This makes molybdenite an ideal mineral for the Re-Os geochronometer as shown in many studies. However, the shorter distance between radiogenic Os and S compared to those of Re-S and Mo-S in molybdenite suggests that the radiogenic Os has a smaller ionic size than Re(IV) and Mo(IV). Furthermore, Os may be partly present as Os(III). Smaller and lower charge Os can diffuse faster than larger and higher charge Re in molybdenite at a given set of conditions. Hence, our study provides an atomic-level explanation for the high mobility of Os compared to Re, which has been suggested by earlier workers using laser ablation ICP-MS.  相似文献   

9.
Urban roadside soils are the “recipients” of large amounts of heavy metals from a variety of sources including vehicle emissions, coal burning waste and other activities. The behavior of heavy metals in urban roadside soils depends on the occurrence as well as the total amount. Accordingly, knowledge of the interactions between heavy metals and other constituents in the soil is required to judge their environmental impact. In this study, correlations of heavy metal concentrations (Pb, Zn, Cu, Ag, Se, Ni, Cr and Ba) to iron extracted using dithionite–citrate–bicarbonate (DCB) buffer (FeDCB), fulvic acids and particle size fractions were examined from the Xuzhou urban roadside soils. Heavy metals except for Cr and fulvic acids had a positive significant correlation with FeDCB, indicating these metals and fulvic acids are principally associated with the surfaces of iron oxides of the soils. Significant positive correlations were also found between the contents of fulvic acids and heavy metals, showing these heavy metals (especially for Cu, Ni and Cr) form stable complexes with fulvic acids. Such finding is of importance with regard to the increased mobilization of heavy metals, e.g., into freshwater ecosystems. Ag, Se and Cr are independent of particle size fractions because of their low concentrations of Ag and Se in the studied soils. Pb, Zn, Cu, Ba and Ag are mainly enriched in the finer soil particles (especially <16 μm).  相似文献   

10.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

11.
Sediment samples were collected from streambeds in an undisturbed watershed in eastern Quebec (Gaspé Peninsula). Two sampling sites were located on a stream draining an area of known mineralization (Cu, Pb, Zn) and two on a control stream. The sediment samples were separated into 8 distinct size classes in the 850 μm to <1 μm size range by wet sieving, gravity sedimentation or centrifugation. Each sediment subsample was then subjected to a sequential extraction procedure designed to partition the particulate heavy metals into five fractions: (1) exchangeable; (2) specifically adsorbed or bound to carbonates; (3) bound to Fe-Mn oxides; (4) bound to organic matter; (5) residual. The following metals were analyzed in each extract: Cu, Pb, Zn; Fe, Mn.Comparison of samples from the mineralized area with control samples revealed the expected increase in total concentrations for Cu, Pb and Zn. Non-detrital metals were mainly associated with Fe oxides (specifically adsorbed; occluded) and with organic matter or resistant sulfides. For a given sample, variation of trace metal levels in fractions 2 and 3 with grain size reflected changes in the available quantities of the inorganic scavenging phase (FeOx/MnOx); normalization with respect to Fe and Mn content in fraction 3 greatly reduced the apparent dependency on grain size.The results of this study suggest that a single reducing extraction (NH2OH.HCl) could be used advantageously to detect anomalies in routine geochemical surveys. A second leaching step with acidified H2O2 could also be included, as the trace metal concentrations in fraction 4, normalized with respect to organic carbon content, also showed high {anomaly/background} ratios.  相似文献   

12.
The retention of Cu and Cu-amino acid complexes by montmorillonite and beidellite, before and after repeated acidified aqueous solution treatments, was studied using X-ray diffraction, chemical and thermal analyses, mass spectrometry and synchrotron-based X-ray absorption spectroscopy (XAS).The results indicate that the extraction of metal complexes from smectites depends on the nature of the layer charge and on the kind of organic species. Cu-cysteine complexes are strongly retained in the interlayer position, whereas Cu-glycine complexes are mostly adsorbed in cationic form which can be easily removed from the silicate layer. The layer periodicity for Cu-smectites treated with glycine shows little or no layer expansion, whereas significant swelling of the layer periodicity is observed in smectites treated with cysteine.Thermal decomposition of both smectites with sorbed Cu-amino acid species shows the evolution of H2O, NO, CH3CH3, and CO2. In Cu-cysteine treated smectites, the release of H2S, NO2, SO2, and N2O3 also occurs.X-ray absorption spectroscopy (XAS) was used to assess the relationships between the structure of the Cu complexes and their desorption from smectites. In Cu-exchanged smectites, the first coordination shell agrees with the hypothesis that the Cu coordinates to oxygen atoms to form monomer and/or dimer complexes. The first coordination shell of Cu in smectites treated with glycine shows four atoms at distances of ∼2 Å. Two of these bonds are with nitrogen and two with oxygen atoms. For copper-cysteine complexes XAS data are compatible with the existence of Cu-N clusters, thus suggesting that Cu links to the amino acid by the aminic group.  相似文献   

13.
R. O. Sack 《Petrology》2017,25(5):498-515
Possible topologies of miscibility gaps in arsenian (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag)10(Fe,Zn)2Sb4S13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu10(Fe,Zn)2(Sb,As)4S13 fahlores. It is inferred that miscibility gaps in (Cu,Ag)10(Fe,Zn)2As4S13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores may vary from comparable to those inferred for (Cu,Ag)10(Fe,Zn)2As4S13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu10(Fe,Zn)2(Sb,As)4S13 and (Cu,Ag)10(Fe,Zn)2Sb4S13 planes of the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlore cube.  相似文献   

14.
Eighteen sediment samples and six water-column samples were collected in a small (6 km2), coastal embayment (Port Jefferson Harbor, New York) to define a high-resolution spatial distribution of metals and to elucidate sources of contaminants to the harbor. Sediment metal (Ag, Cu, Fe, Ni, Pb, V, and Zn) concentrations varied widely, reflecting differences in sediment grain size, with higher metal concentrations located in the fine-grained inner harbor sediments. Calculated enrichment factors for these sediments show that Ag, Pb, Cu, and Zn are elevated relative to both crustal abundances and their respective abundances in sediments in central Long Island Sound. Metal concentrations were 1.2 to 10 fold greater in water from the inner harbor compared to water from Long Island Sound collected outside the mouth of the harbor. Spatial variations in trace metals in surface waters within the bay parallel the spatial variations of trace metals in sediments within the harbor. Elevated water-column metal concentrations appear to be partially derived from a combination of diagenetic remobilization from contaminated sediments (e.g., Ag) and anthropogenic sources (e.g., Cu and Zn) within the southern portions of the harbor. Although the National Status and Trends Program had reported previously that sediment metal concentrations in Port Jefferson Harbor were low, the results of this study show sediment metals have high spatial variability and are enriched in the inner harbor sediments at levels comparable to more urbanized western north shore Long Island harbors.  相似文献   

15.
斑岩型铜钼矿床除主要成矿元素Cu,Mo外,还往往共(伴)生Re,Co,Au,Ag等重要元素,综合回收利用共(伴)生金属具有重大资源及环境效益。通过研究斑岩型铜钼矿床中共(伴)生元素Re,Co,Au,Ag的品位、储量、赋存状态及分布规律,认为Co主要以类质同象形式赋存于黄铁矿中,其分布与黄铁矿密切相关,通常浓集于绢英岩化带外侧;Au,Ag主要以自然金、银与金银系列矿物的形式产出,Au,Ag在不同硫化物中的含量、颗粒粒度以及赋存形式差异很大,Au在各蚀变带均有可能富集,但主要浓集区域是钾化带与石英-绢云母化带;Ag在早期主要以Cu-Ag-Au的形式富集于绢英岩化带,晚期以Pb-Zn-Ag形式赋存于青磐岩化带;Re的分布与绢云母化带的辉钼矿密切相关。  相似文献   

16.
The oxidation and dissolution mechanisms of galena (PbS) remain uncertain with a wide variety of possible mechanisms having been proposed in the literature. In this study, the thermodynamic viability of some possible mechanisms has been tested using semi-empirical quantum chemical calculations applied to a perfect (001) galena surface.The adsorption of O2 and H2O has been examined in both the gaseous and aqueous environments. In agreement with previous ab initio quantum chemical calculations, the surface induced dissociation of H2O in either environment was found to be energetically unfavourable. However, the dissociative adsorption of O2 was found to be possible and resulted in two O atoms bonded to diagonally adjacent S atoms with the O atoms oriented along the diagonal.The adsorption of H+ and possible subsequent dissolution mechanisms have been examined in the aqueous environment. An anaerobic mechanism leading to the dissolution of hydroxylated Pb2+ was identified. The mechanism involves the protonation of 3 surface S atoms surrounding a central surface Pb atom followed by substitution of this Pb by a further H+. The activation energy of this mechanism was estimated to be ≈100 kJ mol−1. Pb2+ dissolution could only occur with vacancy stabilisation by a H+. The analogous mechanisms for systems comprising H+ adsorbed on either 2 or 4 of the S atoms surrounding a central surface Pb were not found to be energetically viable. Subsequent dissolution of one of the protonated S atoms to form H2S(g) was not found to be possible thus indicating the likely formation of a Pb-deficient S-rich surface under acidic anaerobic conditions.Acidic aerobic dissolution has also been examined. Congruent dissolution to form H2SO4 and Pb2+•6H2O is energetically viable. The dissolution of one of the protonated S atoms neighbouring the Pb2+ vacancy, resulting from the anaerobic dissolution, to form H2SO4, is also possible.  相似文献   

17.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. Over 100 thrust-controlled, sediment-hosted, Himalayan base metal deposits have been discovered in this basin, including the largest sandstone-hosted Pb–Zn deposit in the world (Jinding), and several Cu ± Ag ± Co deposits (Baiyangping, Baiyangchang and Jinman). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7000 t Ag, are mainly hosted in Meso-Cenozoic mottled clastic rocks, and strictly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the Lanping basin.To define the metallogenic history of the study area, we dated nine calcite samples associated with copper sulfides from the Jinman Cu deposit by the Sm–Nd method and five molybdenite samples from the Liancheng Cu–Mo deposit by the Re–Os method. The calcite Sm–Nd age for the Jinman deposit (58 ± 5 Ma) and the molybdenite Re–Os age for the Liancheng deposit (48 ± 2 Ma), together with previously published chronological data, demonstrate (1) the Cu–Ag mineralization in the western Lanping basin mainly occurred in three episodes (i.e., ∼56–54, 51–48, and 31–29 Ma), corresponding to the main- and late-collisional stages of the Indo–Asian orogeny; and (2) the Pb–Zn–Ag (±Cu) mineralization in the eastern Lanping basin lacked precise and direct dating, however, the apatite fission track ages of several representative deposits (21 ± 4 Ma to 32 ± 5 Ma) may offer some constraints on the mineralization age.  相似文献   

18.
Small hexagonal and triangular platelets of molybdenite (MoS2), 5 to 25 m in diameter, were identified in phenocrysts and matrix glass of unaltered felsic volcanic rocks from Pantelleria, Italy. The MoS2 occurs commonly in pantellerites (peralkaline rhyolites), rarely in pantelleritic trachytes, and never in trachytes. The occurrence of euhedral MoS2 platelets in all phenocryst phases, in matrix glass, and even in some melt inclusions indicates that MoS2 precipitated directly from the peralkaline melt. Despite MoS2 saturation, the melt (glass) contains greater than 95% of the Mo in Pantellerian rocks: X-ray fluorescence analyses of 20 whole rocks and separated glasses show that whole rocks consistently contain less Mo than corresponding matrix glasses, the differences being in proportion to phenocryst abundances. The Mo contents increase with differentiation from trachytes (2–12 ppm) to pantellerites (15–25 ppm) and correlate positively with incompatible elements such as Th, Y, and Nb. The Mo concentrations, as determined by secondary ion mass spectrometry, are essentially the same in matrix glasses and melt inclusions, showing that Mo did not partition strongly into a volatile fluid phase during outgassing. The high Mo contents of the pantellerites (relative to metaluminous magmas with 1–5 ppm) may be due to several factors: (1) the enhanced stability of highly charged cations (such as Mo6+, U4+, and Zr4+) in peralkaline melts; (2) the rarity of Fe-Ti oxides and litanite into which Mo might normally partition; (3) reduced volatility of Mo in low fO2, H2O-poor (1–2 wt%) peralkaline magmas. Geochemical modeling indicates that the precipitation of MoS2 can be explained simply by the drop in temperature during magmatic differentiation. The occurrence of MoS2 in pantellerites may result from their high Mo concentrations and low redox state (Ni/NiO=-2.5) relative to metaluminous magmas, causing them to reach MoS2 saturation at magmatic temperatures. The apparent absence of MoS2 microphenocrysts in more oxidized, metaluminous rhyolites may indicate that Mo is dissolved primarily as a hexavalent ion in those magmas.  相似文献   

19.
Edet E. Isuk 《Lithos》1983,16(1):17-22
The effects of excess SiO2 and CO2 on the solubility of molybdenite in hydrous sodium disilicate melts were experimentally determined at 680 bars and 650°C. The molybdenite solubility decreases with increasing SiO2 and CO2. Under the experimental conditions, the MoS2 content of the vapor-saturated liquid decreases from 10 wt.% to 2.5 wt.% at SiO2 saturation. In the presence of CO2, the solubility decreases to 4.6 wt.% MoS2 and becomes negligible at high PCO2. These results are explained as deriving from the increased polymerization and hence decreased NBO/Si ratio of the melt with increasing SiO2 content and CO2, respectively. Sulfur dissolves principally as SO4?2 at the relatively high fo2 of the experiments. Consequently, the effect of sulfur is to lower the Mo solubility by effectively decreasing the NBO/Si ratio of the melt. Sulfur saturation is, therefore, likely to be a limiting factor in the Mo content of alkali silicate melts because of the chalcophile affinities of molybdenum.  相似文献   

20.
The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high‐grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID‐NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP‐MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid‐state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point‐in‐time markers for age comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号