共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
亚洲中部干旱区的大尺度遥感积雪信息研究,可在跨界河流水资源分配利用方面提供数据支持,对国家重大战略的生态安全保障有重要作用。采用数据融合方法,将MOD10A2和MYD10A2数据进行融合去云处理,结合气象站点积雪数据评估去云后的积雪识别精度;提取积雪覆盖率(SCP)与积雪日数(SCD)信息,分析SCP与SCD年际、年内变化差异;结合数字高程模型,分析不同高程带下SCP的时空变化规律。结果表明:(1)MOD10A2与MYD10A2融合去云处理,可有效去除云的干扰,准确提取亚洲中部干旱区积雪变化信息。(2)年内SCP最大值范围为55.7%~77.4%,最小值范围为1.6%~2.9%,融雪期SCP下降速率具有明显地域差异,总体SCP呈缓慢增加趋势。(3)总体SCD呈略微下降趋势,32.2%的区域呈下降趋势,30.9%的区域呈增加趋势,36.9%的区域保持稳定不变。(4)海拔1 000 m以下,SCP年内随季节变化呈U型,年际变化显著;1 000~4 000 m区域,SCP年内均随季节的变化呈现出V型,年际变化呈现出稳定性波动;6 000 m以上为永久性积雪,季节、时空变化差异性均不明显。 相似文献
3.
青藏高原是气候变化的敏感区,其积雪在区域水文循环和气候系统中具有重要作用。本文利用1980—2020年逐日无云积雪覆盖遥感数据,分析了该地区近40年的积雪面积、积雪覆盖日数的分布特征和变化趋势。结果表明:青藏高原地区积雪分布具有明显的空间分异和垂直地带性分布特征,阿姆河流域、印度河流域、塔里木盆地、恒河流域、怒江流域和雅鲁藏布江流域的高海拔山区是积雪广泛分布的地区。在水文年内,高原地区积雪覆盖率呈单峰变化,8月上旬积雪面积最小,1月中下旬达到最大,分别占高原总面积的5.2%和38.6%;40年间,高原地区平均积雪面积以3.9×104 km2·(10a)-1的趋势显著减少(P<0.05);积雪覆盖日数以0.47 d·a-1的趋势显著减少,高原71.4%的区域积雪覆盖日数呈减少趋势,呈显著减少的区域约占55.3%;17.1%的区域积雪覆盖日数呈显著增加趋势,且主要分布在5 200 m以上的高海拔山区,在海拔5 200~5 900 m之间的区域,积雪覆盖日数的增加率随海拔升高而增加。 相似文献
4.
北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价 总被引:10,自引:9,他引:10
以北疆为研究区,结合气象台站记录的雪情数据,利用地理信息系统方法分析了2004年12月1日至2005年2月28日期间北疆地区90个时相的MODIS每日积雪产品MOD10A1和8日合成产品MOD10A2的积雪分类精度.研究表明:1)当积雪深度≤3 cm时,MOD10A1对积雪的识别率非常低,仅为7.5%;积雪深度为4~6 cm时,积雪识别率达到29.3%;积雪深度为15~20 cm,平均积雪识别率达到45.6%.当积雪深度>20 cm时,平均积雪识别率为32.2%;2)MOD10A1产品的积雪分类精度受天气状况的严重影响.在晴空状况下,该产品的最大积雪识别率达到58.2%;但是在多云或阴天时,平均积雪识别率仅为17.8%;3)下垫面对MOD10A1的分类结果也会造成影响,在荒漠区MOD10A1的积雪识别率为39.8%,在草原和稀树草原区的积雪识别率为37.2%,农业用地的积雪识别率最低,为29.1%;4)MOD10A2产品可较好的消除云层对地表积雪分类精度的影响,平均积雪识别率达87.5%,可较好的反映地表积雪的分布状况. 相似文献
5.
青藏高原中东部积雪深度时空变化特征及其成因分析 总被引:1,自引:5,他引:1
基于逐日积雪深度(雪深)、逐月气温和逐月降水量地面观测资料,利用数理统计方法分析了青藏高原中东部地区1961-2014年雪深时空变化特征及其成因,结果表明:青藏高原雪深空间分布不均,存在喜马拉雅山脉南坡(高原西南部)、念青唐古拉山-唐古拉山-巴颜喀拉山-阿尼玛卿山(高原中部)和祁连山脉(高原东北部)三处雪深高值区,冬季最大,其次是春秋季,夏季仅在纬度或海拔较高处才有雪深记录;从长期来看雪深以减少为主,尤其是夏秋季。在青藏高原普遍"增温增湿"背景下,雪深表现为先增后减的变化特征;雪深随海拔升高而增加,但最大雪深并非出现在最高海拔处;在不同季节雪深的气象要素成因上,冬季由降水主导,其余季节由气温主导。1961-1998年冬春季雪深增加与降水增多有关,而1998-2014年气温的上升以及降水的减少共同导致了雪深的减少,夏秋季雪深持续减少与同期气温持续升高有关。 相似文献
6.
选取新疆89个气象站1961—2017年逐日积雪深度观测资料, 分析近60 a新疆冬季最大积雪深度及积雪日数的时空变化特征。结果表明: 新疆冬季最大积雪深度以天山为界, 天山以北多于南部, 北疆北部和伊犁河谷最大达60 ~ 100 cm, 天山山区及天山北坡30 ~ 60 cm, 南疆大部地区不足20 cm; 新疆北部最大雪深多出现在1996年以后, 也是新疆气候由暖干转为暖湿的阶段。近60 a新疆区域尤其是北疆、 天山山区冬季最大积雪深度呈显著增加趋势, 南疆略有增加; 89个气象站中87.6%呈增加趋势, 20个显著增加, 主要分布在天山以北地区。分析不同积雪深度出现的日数, 新疆区域、 北疆地区、 天山山区≤10 cm积雪约占积雪总日数的48% ~ 58%, 10 ~ 20 cm积雪占24% ~ 32%, 20 ~ 30 cm积雪占12% ~ 15%, >30 cm积雪约占5%左右; 南疆地区以≤5 cm积雪为主。新疆区域、 北疆地区以及天山山区积雪日数总体呈减少趋势, 其中≤10 cm积雪日数减少, 尤其北疆显著减少, >20 cm积雪日数显著增加, 南疆变化不明显; 空间变化趋势分布基本与区域变化一致。 相似文献
7.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区. 相似文献
8.
2001—2008年天山西部山区积雪覆盖及NDVI的时空变化特性 总被引:4,自引:1,他引:4
对于以融雪及融冰补给为主的山区河流,融雪及融冰量的多少对当地可供利用水资源量的大小起着决定作用,对河流所在的水库的正常蓄水、防洪及发电产生一定的影响.积雪时空变化规律的影响因素较多,除气温这个主要因素外,还与当地植被覆盖情况、风向、风速及太阳辐射等因素有关,因此,基于2001—2008年的MODIS积雪数据和NDVI数据分析了研究区的积雪覆盖度与NDVI时空变化特性.结果表明:天山西部山区积雪分布极不均匀,边缘山区多雪,腹地少雪,边缘山区南坡比北坡积雪多;积雪期主要集中在10月到翌年5月,积雪年际变化差异较大,积雪有减少趋势.近8a来研究区的植被有较好的改善且与降水有一定的联系,但部分区域NDVI也有减小的趋势,不同区域植被返青时间不同.通过对比分析发现,除积雪消融与NDVI有其自有的变化规律外,二者之间也有很好的相关性,但关于植被覆盖是否会对积雪的消融起加速或减缓的作用,基于此两种MODIS数据产品无法得知,有待于通过其它方法或进行野外实验确定. 相似文献
9.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差. 相似文献
10.
祁连山区MODIS积雪反照率产品的精度验证及云下积雪反照率估算研究 总被引:3,自引:1,他引:3
积雪反照率在全球气候和能量收支平衡模型中起着重要的作用. 利用祁连山地区大冬树垭口站点反照率实测数据对由TM/ETM+得到的反照率数据进行标定, 然后将TM/ETM+反照率数据通过升尺度对MODIS逐日积雪反照率(SAD)产品在晴空条件下的精度进行了验证. 同时, 发展了一个基于MODIS SAD与AMSR-E SWE数据融合并结合Noah积雪反照率参数化方案估算MODIS SAD数据云下积雪反照率的算法, 通过统计分析纠正了云对积雪反照率的影响, 对云下积雪反照率进行了验证分析. 结果表明:MODIS SAD产品在祁连山地区的精度要低于大面积积雪覆盖的平坦地区(如格陵兰岛), 其平均绝对误差及均方根误差分别为0.0548和0.0727; 云下积雪反照率估算方法可以有效地获取云覆盖下积雪像元的反照率值, 纠正后的无云MODIS SAD数据与地面观测值有较好的一致性, 其平均绝对误差为0.078. 相似文献
11.
12.
2000-2005年青藏高原积雪时空变化分析 总被引:10,自引:6,他引:10
利用MODIS卫星反演的积雪资料以及同期气象资料,分析了2000-2005年青藏高原积雪分布特征、年际变化及其与同期气温和降水的关系,结果表明:青藏高原积雪分布极不均匀,四周山区多雪,腹地少雪;高原积雪期主要集中在10月到翌年5月;2000-2005年高原积雪年际变化差异较大,积雪面积总体上呈现冬春季减少、夏秋季增加的趋势;气温和降水是影响高原积雪变化的基本因子.冬季,高原积雪面积变化对降水更为敏感;春季,气温是影响高原积雪面积变化更主要的因素. 相似文献
13.
Based on GIMMS NDVI data of Qilian Mountains region during 1982-2006, using the maximum synthesis, mean method, slope analysis and correlation analysis, the spatial and temporal changes of vegetation cover and its correlations with climatic factors were studied in Qilian Mountains. The results showed that: ①Vegetation NDVI of Qilian Mountains increases from west to east in general, showing the distribution pattern of much more vegetation in east regions than in west regions; ②Vegetation NDVI of Qilian Mountains has generally increased in the past twenty five years, but there are obvious spatial differences, especially vegetation NDVI of middle and east regions increase obviously; ③There have been obvious differences on spatial variation of seasonal NDVI in the past twenty five years in Qilian Mountains, and the increased area of vegetation NDVI is the largest in summer, followed by autumn, spring, but the most reduced area of vegetation NDVI is in winter. The regions of increased vegetation NDVI concentrate on southern mountain of Qinghai Province and in Buha River Basin, while the regions of reduced vegetation NDVI concentrate on Wushaoling, Lenglongling and Daban mountain in each season; ④The correlations between monthly average vegetation NDVI and temperature and precipitation are very significant, which indicates that temperature and precipitation are the main factors affecting the change of vegetation NDVI in Qilian Mountains, but intensive human activities are also important factors affecting the change of vegetation NDVI in some areas. 相似文献
14.
新疆雪密度时空分布及其影响特征研究 总被引:9,自引:1,他引:9
对29个有雪密度观测的气象站40 a气象资料进行聚类和回归分析.结果表明:降水、雪深、大风、吹雪等因子与雪密度有密切正相关关系,由此建立雪密度与气候因子关系模型.另选无雪密度观测的50个站40 a气象资料,用关系模型计算出各站雪密度,从而使有雪密度值的站点增加到79个,为深入细致研究新疆雪密度时空分布打下了基础.研究表明,新疆雪密度有明显稳定期和不稳定期之分,稳定期雪密度是时间的函数.采用Map Gis65,结合卫星遥感资料,研制了新疆雪密度(稳定期)空间分布图.新疆雪密度的分布呈现从盆地及其周边到山地及其周边最后到海拔3 800-4 000 m以上高山带,随高度的升高雪密度依次升高.依据雪密度分布图和时间函数计算得出,稳定期新疆雪密度最大平均值为0.191 g·cm-3. 相似文献
15.
16.
基于多源数据的西藏地区积雪变化趋势分析 总被引:2,自引:1,他引:2
利用1980—2009年气象台站的观测数据、 北半球NOAA周积雪产品和2001—2010年500 m分辨率的EOS/MODIS积雪产品等多源资料, 从不同角度对近30 a来西藏区域积雪变化趋势进行了分析. 结果表明: 不同资料分析均显示, 近30 a来西藏地区积雪不断减少, 尤其以近些年较为明显. 近30 a积雪日数、 最大积雪深度总体上呈现下降趋势, 尤其是进入21世纪以来, 下降趋势非常明显. 从秋冬春季节的积雪变化趋势来看, 冬、 春两季的积雪在减少, 而秋季在增多, 这些变化趋势都与各季节的气温和降水密切相关. NOAA资料显示, 近30 a来西藏地区的积雪覆盖面积正在逐步减少; 季节变化略有不同, 春、 秋两季略呈上升趋势, 冬、 夏两季在减少, 且夏季减少趋势较明显. MODIS资料分析表明, 近10 a来西藏地区的积雪总体呈下降趋势, 尤其是2007年下半年开始下降明显. 秋季的积雪在增加, 冬、 春、 夏三季的积雪趋于减少, 且春季的下降趋势最明显, 其次为冬季, 夏季的减少幅度最小. 不同海拔的积雪都有减少趋势, 最明显的是海拔4 000~5 000 m的积雪, 其次是海拔5 000~6 000 m段. 按地理区域分析, 近10 a来西藏东、 西、 中3个区域的积雪都呈减少趋势, 其中西部的下降趋势最明显, 其次为中部, 东部相对较稳定. 相似文献
17.
2000—2006年中国天山山区积雪时空分布特征研究 总被引:7,自引:2,他引:7
以中国境内天山山区为研究区,基于2000—2006年的遥感积雪产品积雪分布时间序列趋势和空间分布特征,对积雪分布的年际变化趋势、积雪分布随海拔的变化趋势、积雪频率以及积雪雪线高度的年变化进行了分析.结果表明:1)积雪经历从秋季开始累积到春季开始消融的过程,1—2月积雪面积达到最大,7—8月面积最小.冬季积雪所占比例最大,超过50%;2)2000—2006年积雪面积年际变化略呈上升趋势,冬季上升趋势较明显,春、秋和夏季变化趋势不明显.冬季积雪面积在海拔4000m呈上升趋势,≥4000m呈下降趋势.在海拔2000m积雪的上升趋势达到最高点;3)从积雪频率来看,存在5个高值区,覆盖频率高达70%左右.从空间分布来看,天山中段积雪最多,东段次之,西段最少.在海拔3000m以下积雪次数较少,海拔3000m以上积雪次数显著增加.月积雪次数随海拔的变化表现为:海拔4000m以上各月的积雪次数都很多,12月至翌年2月在各高程带的积雪次数都较大;10—11月和3—4月积雪以海拔2500m为界,之下次数较少,以上次数增加显著;5—9月的积雪次数在海拔3000m以下非常少,在海拔3000m以上次数逐渐增加;4)以覆盖率≥40%相对应的海拔作为各个月份的雪线高度,天山山区平均雪线海拔在2875m.夏季雪线海拔在4000m以上;冬季雪线海拔在1500m. 相似文献
18.
40余年来中国地区季节性积雪的空间分布及年际变化特征 总被引:11,自引:8,他引:11
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势. 相似文献
19.
祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析 总被引:6,自引:0,他引:6
采用美国Li-COR公司生产的LI-6400-09土壤呼吸室和LI-6400便携式光合作用测量系统,在2004年生长季节对祁连山亚高山灌丛林土壤呼吸速率进行了连续观测.结果表明:在整个生长季祁连山亚高山灌丛林土壤呼吸速率的空间变化为随着海拔梯度的增加,土壤呼吸速率逐渐减小,其变异系数逐渐增加;生长季节土壤呼吸速率晚间维持在较低水平,2:00-6:00最低,在7:00-8:30开始升高,11:00~6:00达到最大值,16:00~8:30开始下降,整个过程呈单峰曲线.土壤呼吸速率的日平均值介于(0.79±0.60)μmol·m-2·s-12.49±0.97μmol·m-2·s-1.土壤呼吸速率78月份达到最大值(5.861μmol·m-2·s-1),5月与9月份次之,4月与10月份基本一致,整个生长过程总的变化趋势呈单峰曲线形式.亚高山灌丛林土壤呼吸的空间变异主要受温度、水分和植物根系的综合影响. 相似文献