首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The estimation of potentially harmful element (PHE) availability in urban soil is essential for evaluating impending risks for human and ecosystem health. In the present study five single extraction procedures were evaluated based on the analysis of 45 urban top-soil samples from Athens, Greece. The pseudototal (aqua regia), potentially phytoavailable (0.05 M EDTA), mobilizable (0.43 M HAc), bioaccessible (0.4 M glycine) and reactive pools (0.43 M HNO3) of PHEs were determined. In general, geogenic elements in Athens soil (Ni, Cr, Co, As) are relatively less available than typical tracers of anthropogenic contamination (Pb, Zn, Cu, Cd). Results of principal component analysis (PCA) indicate an association between available fractions of Pb, Cu, Zn, Cd and amorphous Fe oxides, whereas amorphous Mn oxides account for the available concentrations of Mn, Ni and Co. Empirical multiple linear regression models demonstrate that pseudototal concentration is the predominant explanatory factor of variability for the available pools of the anthropogenic elements. Major elemental composition and total organic carbon (TOC) improve the predictions for the geogenic group of elements, although the explained variability remains low. Dilute HNO3 is a better predictor of Zn, Ni, As and Mn availability, whereas Pb and Cu available fractions are predicted more accurately by the classical aqua regia protocol. This study contributes to the international database on the environmental behavior of PHEs and provides additional knowledge that can be used toward the harmonization of chemical extraction methodology in urban soil.  相似文献   

2.
Geochemical works were conducted on anthropogenically effective lithologic unit exposing along the Susanoglu coast in Mersin, Turkey. For this purpose, beach sand sediments from 33 stations were collected and heavy metal and oxide concentrations were analyzed. To determine the source of heavy metals (natural and anthropogenic), simple and multivariate statistical analyses were applied. According to factor analysis, three factors were determined. The first factor consists of SiO2, Al2O3, Na2O, K2O, TiO2, Cr, Ni, Cu and Mo and total variance is explained with 27.502% and expressed as “natural process factor”. These elements (Cr, Ni, Cu, Mo) are closely associated with geogenic materials and came from same sources of ultrabasic rocks (ophiolite). The second factor consists of CaO, MgO, TiO2, MnO, Ni, Pb, Zn and W and total variance is explained with 21.505% and expressed as “anthropogenic factor”. These elements (Pb, Zn, Cd, V, W) are anthropogenic and are mainly due to the effluent or industrial input/activities and came from different sources of pollution in the study area. The third factor consists of Pb, Cd and Sb and total variance is explained with 9.748% and expressed as “intermediate factor”. The factor analysis and the cluster analysis are in support of each other. Cr, Ni, Co, Cd, Hg and Mo concentrations are greater than Turkish acceptable values and they show toxic effect. Al, Cu, Pb, Cd and Mo concentrations in beach sand deposits in the Susanoglu coast are found as 1.44, 1.26, 1.21, 1.02 and 1.04 mg/kg and higher than those in Kızkalesi beach sands. However, all other heavy metal contents are determined in low concentrations.  相似文献   

3.
A soil geochemical survey was undertaken in the cultivated region of Agia in Thessaly area, Central Greece. The objectives of the study were to assess the levels of soil contamination in respect to average concentrations of toxic metals in the region, to determine the associations between the different toxic elements and their spatial distribution and to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. One hundred seventy three soil samples were collected and analysed by ICP-AES after digestion with a mixture of HClO4–HNO3–H2O. The study focused on eleven elements (Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr, Fe and Mg) and all of them except Pb have mean concentrations above the average global soil composition. The elements Ni, Cr, Mn and V show concentrations that according to G.L.C guidelines the Agia soils are classified as slightly contaminated to contaminated. Factor analysis explained 84.02% of the total variance of the data through four factors. Combined with spatial interpretation of its output, the method successfully grouped the elements according to their sources and provided evidence about their natural or anthropogenic origin.  相似文献   

4.
The concentration of metals (Pb, As, Co, Cu, Ni, Zn, Fe and Mn) was investigated in water and sediment samples of E?irdir Lake. The Lake is the second largest fresh water lake of Turkey and it is used as drinking water in the region. The anthropogenic pollutants are primary sources of trace metals which are negatively affected lake water quality. These negative effects were observed in both lake water and bottom sediments. According to obtained data, Pb, Cu, Ni, Fe and Zn have significant enrichment in sediments samples. In addition, the hydrodynamic model of the lake was determined as effectively for Pb, Co, Cu, Ni, Zn, Fe and Mn accumulations. Also, the effect of anthropogenic pollutants was found to be more dominant than geogenic effect in metal accumulation of the lake bottom sediments. Therefore, anthropogenic pollutants within the lake basin should be consistently controlled for the sustainable usage of the lake.  相似文献   

5.
The town of Salihli is situated in Gediz Graben in the western Anatolia. This region is important in terms of industry, mining, geothermal energy, water sources, and agricultural production. Geothermal flow and anthropogenic activities in Salihli threaten the surrounding environment due to the contamination of cold groundwater, surface water, and soil. The goal of the present study is to determine the environmental effects of the geothermal and anthropogenic activities in Salihli on soil, stream sediments, and water. Stream sediments and farm soil have been contaminated by substances derived from geothermal and industrial effluents. To this end, the quality review of the water was completed and the heavy metal levels in stream sediment samples were measured to determine the extent of contamination. The elements As, B, Br, Fe, and Ni are the major contaminants present in surface water and groundwater in the study area. The concentrations of these elements excess tolerance limits of international water standards. Gibbsite, K-mica, kaolinite, sepiolite, halite, sulfur, willemite, and Pb(OH)2 might be precipitated as scales at low temperatures on the soil; this could be interpreted as a resultant from soil contamination. The concentrations of 17 elements (As, Ba, B, Cd, Co, Cr, Cu, Fe, Hg, Li, Mo, Mn, Ni, Pb, Sb, Sr, and Zn) were measured in samples from stream sediments and surface soils. In the study area, especially geothermal and anthropogenic activities give rise to environmental pollution.  相似文献   

6.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

7.
The aim of this study was to investigate spatiotemporal variations in groundwater heavy-metal concentrations at the Karaduvar agricultural-industrial district (Mersin, SE Turkey), where parts of the underlying coastal aquifer has been polluted by petroleum hydrocarbons (PHCs) from diverse sources. The water chemistry data for the present study is comprised of 275 samples collected during 2006–2010 from 55 water-supply wells. The samples were analyzed in situ for physical parameters (EC, DO, pH, and temperature) and in the laboratory for As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn using the ICP-MS method. Box–whisker plots and principal components analysis (PCA) method were employed to determine the seasonal changes occurring in heavy-metal concentrations and to identify source apportionment of pollution parameters in groundwater. During the monitoring period, in many wells, heavy-metal concentrations (except for Cd) exceeded the limit values set by Turkish Water Pollution Control Directive (No: 25687). Results from the PCA suggest that elevated Mn, Fe, Co, Ni and As concentrations may be linked to oxidation–reduction of geogenic Mn/Fe oxyhydroxides in PHC-contaminated parts. The high concentrations of Cu, Mo and probably Cd in background areas result from the agricultural and petrochemical activities conducted in the recent past. At the site, high Pb and Zn concentrations are probably related to agricultural activities in PHC-contaminated areas, whereas Cr can be solely attributed to lithogenic sources. At the Karaduvar site, heavy-metal pollution in groundwater is found to be much more persistent than PHC contamination.  相似文献   

8.
This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0–5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by pollution concurrently possess elevated concentrations of mineral phases typically providing relatively high adsorption capacities for heavy metals.  相似文献   

9.
The results of a first systematic study of spatial distribution of different elements in surface soil over of the Kavadarci region, Republic of Macedonia, known for its nickel industrial activity are reported. The investigated region (360 km2) is covered by a sampling grid of 2 × 2 km2; whereas the sampling grid of 1 × 1 km2 was applied in the urban zone and around the ferronickel smelter plant (117 km2). In total 344 soil samples from 172 locations were collected. At each sampling point soil samples were collected at two depths, topsoil (0–5 cm) and bottom soil (20–30 cm). Inductively coupled plasma-mass spectrometry (ICP-MS) was applied for the determination of 36 elements (Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mn, Na, Mg, Mo, Ni, P, Pb, S, Sb, Sc, Se, Sr, Th, Tl, Ti, U, V, W and Zn). Data analysis and construction of maps were performed using the Paradox (ver. 9), Statistica (ver. 6.1), AutoDesk Map (ver. 2008) and Surfer (ver. 8.09) software. Four geogenic and three anthropogenic geochemical associations were established. Within the research, natural and anthropogenic enrichment with heavy metals was determined. Principally, the natural enrichment is related especially to Ni. Pollution by As, Cd, Co, Cr, Cu, Hg, Mo, Pb and Zn is basically insignificant.  相似文献   

10.
We investigated the source of heavy metals in soils at a site in South Korea, where a ground transportation of zinc-concentrates (ZnS, sphalerite) occurs daily. Seventy soil samples were collected at the site and analyzed for residual concentrations of heavy metals, as well as their chemical and mineralogical properties. Enrichment factor was calculated based on local geochemical background level of metals in soils and confirmed the contamination of soils in the area by an anthropogenic source. The concentration data were also subjected to a Pearson correlation analysis to determine the possible influences of anthropogenic sources and identify the primary source. A slight negative correlation between heavy metals and Al, and a weak correlation between heavy metals and Fe implied that the heavy metals originated from anthropogenic inputs rather than a geogenic source. A strong positive linear correlation between Zn and other heavy metals (i.e., As, Cd, Cu, Pb, r ≥ 0.96, p ≤ 0.001) suggested the influence of a single anthropogenic source of zinc-concentrates containing all of these heavy metals. Zinc-concentrate oxidation and leaching experiments, which mimicked physical and chemical weathering in the environment, indicated that zinc-concentrate could be transformed to zinc oxides and release Cd and Pb upon precipitation. The findings in this study provide an insight into the fate of the Zn that the original form of zinc-concentrate would not remain in the soil after long-term weathering, which should be considered when source of heavy metals is identified.  相似文献   

11.
 A total of 121 bed sediment samples were collected from a 5.8-km stretch of Manoa Stream, Hawaii. Samples were physically partitioned into two grain-size fractions, <63 μm and 63–125 μm, acid digested and analyzed by ICP-AES and FAAS. Non-parametric matched-pair statistical testing and correlation analysis were used to assess differences and strengths of association between the two fractions for Al, Ba, Cu, Fe, Mn, Ni, Pb, Ti and Zn. Results indicated statistically significant differences between fractions for all elements except Mn. Concentrations were significantly greater in the <63 μm fraction for Al, Cu, Pb, Ti and Zn, while Ba, Fe and Ni were higher in the 63–125 μm fraction. Though some elements had statistically significant differences between fractions (Al, Ba, Fe and Zn) percentage differences were in the range of analytical precision of the instrument and thus differences were not practically significant. Correlation analysis indicated strong positive associations for all elements between the two fractions (p<0.0001). Three contamination indices indicated similar degrees of pollution for each size fraction for four elements having an anthropogenic signal (Ba, Cu, Pb and Zn). The environmental information obtained from the 63–125 μm fraction was essentially equivalent to that from the <63 μm fraction. In this system it is clear that both bed sediment fractions indicate anthropogenic enrichment of trace metals, especially Pb, and further supports previous research that has found that aquatic sediments are critical median for tracing sources of pollution. Received: 17 August 1998 · Accepted: 30 October 1998  相似文献   

12.
《Applied Geochemistry》2000,15(4):513-530
Soil samples taken from excavated pits on traverses across New Zealand’s Scott Base, Antarctica, were leached with water and 0.01 M HNO3 and the leachates analysed for Ag, Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The soils had high conductivity and pH values generally increasing with depth and in the range 8.3–10.1. The water leachate generally contained most of the extractable metals except Mn and Cd, and As. Linear relationships were observed between some metals leached into alkaline solution and the Fe in those solutions. The ratios to Fe were comparable to those of the host basanite, and this observation is interpreted as showing that these metals are incorporated in fine mineral particulates derived directly from the rock mass. Outliers in leachable metal concentrations in the soils indicated appreciable contamination of the soil from anthropogenic sources with Ag, Cd, Cu, Pb and Zn as well as As. In some locations high concentrations of Ag and Cd correspond to specific sources and drainage channels. High concentrations of Pb were widely spread and in the top soil layers whereas the elevated concentrations of Zn were distributed throughout the soil profiles indicating atmospheric sources and different mobilities within the soils. Transport within the soils is evident for some metals, as is lateral movement over and through the soils.  相似文献   

13.
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer.  相似文献   

14.
2002~2005年在长江中下游的洪湖、固城湖和太湖分别采集了沉积物柱样钻孔,测定了总有机碳(TOC)和金属元素包括Pb,Al,Fe,Ti等,并采用210Pb和137Cs进行了近代沉积物定年。研究结果表明,洪湖钻孔平均沉积速率为0.15cm/a,固城湖平均沉积速率在0.067cm/a,太湖平均沉积速率为0.35~0.41cm/a。根据湖泊沉积物中铅元素与参考元素(Al,Fe和Ti)浓度和TOC的相关关系建立了回归方程,线性关系极显著(p<0.001)。根据回归方程获取了钻孔中铅的背景值变化,研究表明近代沉积物中金属铅不仅仅来源于自然的作用,而人类活动导致铅的累积发生时间都在20世纪70年代,从一个侧面也说明利用沉积物铅含量变化进行断代存在可能性。对太湖钻孔而言,其污染程度要高于洪湖和固城湖。研究结果表明近30年来洪湖和固城湖人为造成湖泊沉积物铅累积量在不断增加,其沉积物铅污染有进一步加重的趋势,应受到科学家和管理部门的关注。  相似文献   

15.
To investigate trace elements in wet precipitation over the Tibetan Plateau (TP), a total of 79 event-based precipitation samples were collected from September 2007 to September 2008 at Nam Co Station. Samples were analyzed for concentrations of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb using inductively coupled plasma-mass spectrometry (ICP-MS). The annual volume-weighted concentrations of elements were generally comparable to other background sites, and much lower than urban areas. The enrichment factors (EF) showed that, in comparison with the Tibetan soils, the wet precipitation had elevated concentrations of Cr, Co, Ni, Cu, Zn, Cd and Pb, probably indicating their anthropogenic origins. Other elements (Al, Fe, Mn and V) with enrichment factor value of <10 may derive mainly from crustal sources. The principal component analysis further confirmed the two different groups of elements in wet deposition samples. The backward trajectories were calculated for each precipitation event using the NOAA HYSPLIT model. The results indicated significant differences of EF for trace elements of anthropogenic origin between the summer monsoon and non-monsoon seasons. The data obtained in the present study indicated that pollutants can affect remote high altitude regions like the Tibetan Plateau through long-range transport, especially in the summer monsoon season.  相似文献   

16.
Santiago, the capital of Chile, suffers from high air pollution levels, especially during winter. An extensive particulate matter (PM) monitoring and analysis program was conducted to quantify elemental concentrations of PM. Size-resolved PM samples (PM2.5 and PM10–2.5) from the La Paz and Las Condes stations in Santiago (2004–2005) were analyzed using ICP-MS. Most trace element concentrations (Cu, Pb, Zn, Mn, V, Sb, Pb and As) were higher during winter than during summer and were also higher at the La Paz station than at the Las Condes station. During the highest pollution events, As concentrations in PM2.5 (16 ng m?3) exceeded the annual average standard value (6 ng m?3). A 10-year time series showed decreasing Pb and As concentrations and slightly increasing Zn, Cu and Mn concentrations. Concentrations of Cr and Ni remained relatively constant. The implementation of new public policies in 1998 may explain the decreasing concentrations of Pb and As. Enrichment factor (EF) calculations identified two principal groups: elements with EF < 10 (Mg, Y, Zr, U Sr, Ca, Ti, and V) and EF > 10 (Rb, K, Cs, Fe, P, Ba, Mn, Ni, Cr, Co, Zn, Sn, Pb, Cu, Mo, Cd, As, Ag, and Sb), which were related to natural and anthropogenic PM sources, respectively. Three main PM sources were identified using factor analysis: a natural source (crustal matter and marine aerosol), combustion and copper smelting. Three other sources were identified using rare earth elements: fluid catalytic crackers, oil-fired power production and catalytic converters.  相似文献   

17.
Upcoming International Events   总被引:3,自引:0,他引:3  
Metals in lacustrine sediment have both anthropogenic and natural sources. Because of intensified human activities, the anthropogenic input of metal elements has exceeded the natural variability. How to distinguish the anthropogenic sources in lake sediments is one of the tasks in environmental management. The authors present a case study, which combined the geochemical and statistical methods to distinguish the anthropogenic sources from the natural background. A 56 cm core (core DJ-5) was collected from Dongjiu Lake, Taihu Lake catchment, China. The concentration distributions of Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti, V and Zn in core DJ-5 indicated that Dongjiu Lake had serious Cd pollution, and the concentrations of Cr, Cu, Pb, Mn and Zn had also exceeded the Chinese State Standards of Soil Environmental Quality in the upper layer of the core. Using Al as a reference element, the other metals were normalized and compared with their baselines to calculate the enrichment factors (EFs). The principal component analysis (PCA) of metal concentrations was performed using ViSta6.4. The results of EFs and PCA indicated that the concentration variations of Cd, Cu, Pb, Mn and Zn were mainly caused by the anthropogenic sources, and the concentration variations of Cr and Ni were influenced by both the anthropogenic and natural factors, while the other metals were mainly derived from the natural sources. Intensified human activities within the lake catchment area resulted in the increase of heavy metal inputs directly and the acceleration of erosion which caused other metal elements to deposit in the aquatic environment. The results of this work will be useful in probing changes forced by humans in the lake environment and in adjusting human activity in restoring the lake environment.
Yanhong WuEmail:
  相似文献   

18.
Milazzo Peninsula soils and substrates are extremely variable, composed of acidic, mafic and ultramafic metamorphic rocks, carbonatic sedimentary rocks, and sometimes volcanic rocks, thus contributing to a mixed influence on their chemical composition. Moreover, the region is highly polluted due to atmospheric releases from anthropogenic activities, such as refinery industry. In addition, emissions of airborne particles from volcanic eruptions are also likely to fall to the ground and provide trace elements to the soils. The purpose of this study is to distinguish between anthropogenic and geogenic sources contributing to the concentrations of metals in soils by studying their distribution in major and trace elements in relation to substrates. As regards geogenic sources, the major elements composition of soils comes firstly from metamorphic rocks, secondly from carbonates, and to a minor extent from volcanic rocks. Enrichment factors calculations relative to substrate rocks, and using Th as reference element, show that the soils are enriched in As, Pb, Zn, and Ni. Rare earth elements (REEs) patterns normalized to substrate rocks exhibit enrichment in light REEs and a positive anomaly in Gd, indicating anthropogenic contributions in the soil composition. REE ratios and trace elements were plotted to investigate the relationships between anthropogenic sources and substrates in soils compositions. The graphs of La/Ni vs La/Gd and La/Ce vs La/Nd show that soils plot on a line toward substrate rocks on one side, and toward an end member which is represented by a spent catalyst and atmospheric particles emitted by refinery activities. Plots of La vs Cr, and V vs La show similar trends, whereas plots of Zn vs Ni and Pb vs V suggest that another end member, which is unidentified, contributes to soil enrichment in Zn and Pb. A binary mixing model applied to the most Zn enriched soil suggests that anthropogenic inputs from refinery emissions may have contributed to 16% of the anomalies in La/Gd. These results suggest that the trace element composition of Milazzo's peninsula soils partly bears the signature of atmospheric emissions of the refinery.  相似文献   

19.
The Vinto Sb–Sn smelter (Oruro, Bolivia) has been linked to arsenic and heavy metal pollution in air, soils, residual waters of the smelter, and hair and urine of workers, but crop concentrations had not been assessed previously. In this article, alfalfa, onions, and carrots, separated into roots and shoots, were analyzed for As and Pb, together with corresponding soil samples. The aim was to assess the environmental distribution and potential health impacts of these toxic elements and to compare them to levels observed at other sites around the world. As and Pb concentrations in all analyzed crop samples exceed the FAO/WHO, UK or Chilean limits by 1.5–2 orders of magnitude and As health risk indices were 286 (carrot) and 651 (onion), showing that the potential health risk due to consumption of these products is extremely high. As and Pb soil–plant transfer factors are similar to other contaminated sites around the world, but daily intake and health risk index for As are much higher in Vinto area due to very high concentrations in soils. Arsenic and lead soil and crop concentrations suggest increasing trends toward VMC. Correlations are significant for Pb in some crop fractions, but not for As, possibly due to considerable geogenic contributions to soil As in the area. In future surveys, larger numbers of soil and crop samples should be analyzed, and additional analyses should be carried out to distinguish anthropogenic and geogenic sources of As and Pb in soils and crops in the area.  相似文献   

20.
Trace metal concentrations were investigated in a recent sediment core collected from the Rehri Creek area of the Karachi coast,Sindh-Pakistan.The core was sliced horizontally at 2.5-cm intervals to determine grain size,sediment composition,pH,organic matter,and acid-leachable trace metals:cadmium,chromium,copper,lead,and zinc.The trace metals were analyzed by ICP.To separate anthropogenic from geogenic input,several approaches were made,including comparison with sediment quality guidelines—ecotoxicological sense of heavy metal contamination and classification by quantitative indexes.Grain-size analysis and sediment composition of core sample show a sandy nature with neutral pH.Elemental sequence(ES)of the trace metals is in the order of Zn(19.2-109.56 ppm)>Si(66.46-101.71 ppm)>Ba(12.05-26.86 ppm)>As(8.18-17.36 ppm)>Ni(4.2-14.69 ppm)>Cr(3.02-9.62 ppm)>Pb(2.79-6.83 ppm)>Cu(2.2-5.29 ppm)>Co(0.9-2.05 ppm).Thus it is likely that the area may face a serious threat of metal pollution with the present deposition rates unless stringent pollution control norms are adopted.The Sediment Geo-accumulation Index shows that there is no Cr,Cu,Ni,Pb,Zn,or Fe pollution;however,the former index and the Pollution Load Index indicate arsenic pollution in the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号