首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High resolution pollen, plant macrofossil, charcoal, mineral magnetic and sedimentary analyses, combined with AMS 14C measurements, were performed on multiple sediment sequences along a transect through the former crater lake Preluca iganului in northwestern Romania in order to reconstruct the climatic and environmental changes during the early part of the Last Termination. Lake sediments started to accumulate at 14,700 cal yr BP. Initially the upland vegetation consisted of an open forest with mainly Betula and Salix and few Pinus sp., but from 14,500 cal yr BP onwards, Pinus mugo, P. sylvestris and Populus and later on also Larix became established around the lake. Between 14,150 and 13,950 cal yr BP, Pinus cembra seems to have replaced P. mugo and P. sylvestris. At 13,950 cal yr BP the tree cover increased and Picea appeared for the first time, together with Pinus cembra, P. mugo and Larix. From 13,750 cal yr BP onwards, a Picea forest developed around the site. Based on the combined proxy data the following climatic development may be inferred: 14,700–14,500 cal yr BP, cooler and wet/humid; 14,500–14,400 cal yr BP: gradually warmer temperatures, wet/humid with dry summers; 14,400–14,320 cal yr BP: warm and dry; 14,320–14,150 cal yr BP: cooler and wet/humid; 14,150–14,100 cal yr BP: warm and dry; 14,100–13,850 cal yr BP: warmer and wet/humid; <13,850 cal yr BP: warm and dry. The tentative correlation of this development with the North Atlantic region assumes that the period >14,700 cal yr could correspond to GS-2a, the time span between 14,700 and 14,320 to GI-1e, the phase between 14,320 and 14,150 cal yr BP to GI-1d and the time frame between 14,150 and 13,600 cal yr BP to the lower part of GI-1c.  相似文献   

2.
Pollen analysis from a peat core 7.0 m in length, taken from a bog near Bisoca, in a mid-altitude area of the Buzăului Subcarpathian mountains, is used to reconstruct the postglacial vegetation history of the region. The vegetation record, which is supported by twelve 14C dates, starts at the end of the Late Glacial period. At the Late Glacial/Holocene transition, open vegetation was replaced by forest, suggesting a fast response to climatic warming. The Holocene began with the expansion of Betula, Pinus and Ulmus, followed, after 11,000 cal yr BP, by Fraxinus, Quercus, Tilia and Picea. The rapid expansion of these taxa may be due to their existence in the area during the Late Glacial period. At ca. 9200 cal yr BP, Corylus expanded, reaching a maximum after 7600 cal yr BP. The establishment of Carpinus occurred at ca. 7200 cal yr BP, with a maximum at ca. 5700 cal yr BP. Fagus pollen is regularly recorded after 7800 cal yr BP and became dominant at ca. 2000 cal yr BP. The first indications of human activities appear around 3800 cal yr BP.  相似文献   

3.
Macrofossil, pollen, lithostratigraphy, mineral magnetic measurements (SIRM and magnetic susceptibility), loss‐on‐ignition, and AMS radiocarbon dating on sediments from two former crater lakes, situated at moderate altitudes in the Gutaiului Mountains of northwest Romania, allow reconstruction of Late Quaternary climate and environment. Shrubs and herbs with steppe and montane affinities along with stands of Betula and Pinus, colonised the surroundings of the sites prior to 14 700 cal. yr BP and the inferred climatic conditions were cold and dry. The gradual transition to open PinusBetula forests, slightly higher lake water temperatures, and higher lake productivity, indicate more stable environmental conditions between 14 700 and 14 100 cal. yr BP. This development was interrupted by cooler and drier climatic conditions between 14 100 and 13 800 cal. yr BP, as inferred from a reduction of open forests to patches, or stands, of Pinus, Betula, Larix, Salix and Populus. The expansion of a denser boreal forest, dominated by Picea, but including Pinus, Larix, Betula, Salix, and Ulmus started at 13 800 cal. yr BP, although the forest density seems to have been reduced between 13 400 and 13 200 cal. yr BP. Air temperature and moisture availability gradually increased, but a change towards drier conditions is seen at 13 400 cal. yr BP. A distinct decrease in temperature and humidity between 12 900 and 11 500 cal. yr BP led to a return of open vegetation, with patches of Betula, Larix, Salix, Pinus and Alnus and individuals of Picea. Macrofossils and pollen of aquatic plants indicate rising lake water temperatures and increased aquatic productivity already by ca. 11 800 cal. yr BP, 300 years earlier than documented by the terrestrial plant communities. At the onset of the Holocene, 11 500 cal. yr BP, forests dominated by Betula, Pinus and Larix expanded and were followed by dense Ulmus forests with Picea, Betula and Pinus at 11 250 cal. yr BP. Larix pollen was not found, but macrofossil evidence indicates that Larix was an important forest constituent at the onset of the Holocene. Moister conditions were followed by a dry period starting about 10 600 cal. yr BP, which was more pronounced between 8600 and 8200 cal. yr BP, as inferred from aquatic macrofossils. The maximum expansion of Tilia, Quercus, Fraxinus and Acer between 10 700 and 8600 cal. yr BP may reflect a more continental climate. A drier and/or cooler climate could have been responsible for the late expansion (10 300 cal. yr BP) and late maximum (9300 cal. yr BP) of Corylus. Increased water stress, and possibly cooler conditions around 8600 cal. yr BP, may have caused a reduction of Ulmus, Tilia, Quercus and Fraxinus. After 8200 cal. yr BP moisture increased and the forests included Picea, Tilia, Quercus and Fraxinus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
《Quaternary Science Reviews》2007,26(17-18):2229-2246
A sediment core recovered from Garba Guracha, a glacial lake at 3950 m altitude in the Bale Mountains of Ethiopia, at the boundary of the Ericaceous and Afroalpine vegetation belts, provides a 16,700-year pollen record of vegetation response to climatic change. The earliest vegetation recorded was sparse and composed mainly of grasses, Amaranthaceae–Chenopodiaceae and Artemisia, indicating an arid climate. At 13,400 cal BP, Amaranthaceae–Chenopodiaceae pollen declined sharply and Cyperaceae increased, suggesting a change to moister conditions. The Younger Dryas interval is represented by a small increase in Artemisia and reduced Cyperaceae, indicating aridity. Just after the start of the Holocene (11,200 cal BP), the upper altitudinal limit of the Ericaceous belt rose, and woody Ericaceous vegetation extended across the Sanetti plateau, in response to increased moisture and temperature. The marked change from clastic to organic lake sedimentation at this time reflects the increase in woody vegetation cover in the lake catchment, accompanied by soil stabilisation, and increased leaf litter and soil humus content. From about 6000 cal BP, and especially after 4500 cal BP, mid-altitude dry Afromontane Juniper–Podocarpus forests developed on the northern slopes of the mountains in response to reduced rainfall in a shortened wet season. Erica shrub and forest decreased in area and altitude, and the Afroalpine ecosystem expanded on the plateau. Podocarpus declined from about 2000 cal BP, as Juniperus increased to its present dominance at 2500–3300 m altitude. Human impact on the high-altitude Afroalpine and Ericaceous vegetation has been relatively minor, confirming that the endemic biodiversity of the Ethiopian mountains is a legacy of natural Holocene vegetation change, following repeated expansion and contraction of the upland ecosystems during the Quaternary.  相似文献   

5.
Climatically driven Late Pleistocene and Holocene vegetation changes were reconstructed based on pollen records from the sediments of Lake Kotokel and Cheremushka Bog, located on the eastern shore of Lake Baikal. The described paleoenvironmental record has higher resolution than records collected from Lake Baikal and unites individual events identified in prior studies of bottom and onshore cores. Remarkable shifts in landscapes and expansions of index plants are as follows. Forest tundra and/or forest steppe landscape with birch, spruce, Artemisia, and Poaceae prevailed at ca. 50–25 14C kyr BP. Tundra and/or steppe vegetation dominated by Artemisia and Poaceae was typical for the Last Glacial Maximum. The expansion of shrub birch and willow occurred at ca. 15.5 14C kyr BP. Two peaks of spruce expansion at ca. 47.5–42.4 14C kyr BP (Karginian time) and at ca. 14.5–13 ka (Bølling-Allerød warm intervals) suggest that the condition were more humid than today. A slight increase in Artemisia at ca. 11–10.5 14C kyr BP (13–12 ka) was indicative of the Younger Dryas event. An expansion of birch forests with fir at ca. 12–6.4 ka suggests higher humidity. The currently dominant Scots and Siberian pine forests with birch expanded since 6.4 ka.  相似文献   

6.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

7.
Sedimentary pollen, charcoal and plant macrofossil analyses with high resolution and precision suggest a strong shift in vegetation composition during the early to mid‐Holocene transition in the upper mountain belt. At Piano mire (1439 m above sea level (a.s.l.), Ticino, Switzerland) forests were dominated by Abies alba during the early Holocene (prior to ca. 8000 cal. a BP). Abrupt collapses of A. alba at ca. 7800–7400 cal. a BP enabled the expansion of the light‐demanding pioneer Betula. Afterwards A. alba populations regained their previous abundance in the forests. Within the dating uncertainties of our record we assume that a unique combination of wet and cold years between 8400 and 7500 cal. a BP led to repeated lethal disadvantages for Abies. Our record of Abies oscillations is in good biostratigraphic agreement with the record that has been used to define the Misox cold event (Pian di Signano, 1540 m a.s.l.), which has been previously correlated with the 8200 cal. a BP event. Given the age estimates of the Abies collapses in our well‐dated record, our results suggest that additional efforts are needed to understand the linkage between the Misox and the 8200 cal. a BP event. They imply a high sensitivity of mountain vegetation far below the tree line (~800 m) to Holocene climatic changes of about 2°C in annual air temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.  相似文献   

9.
The historical biogeography of highland Mediterranean pines is explored based on Late Pleistocene and Holocene charcoal from Portugal (Iberian Peninsula, SW Europe). The earliest presence of Pinus type sylvestris (including P. nigra, P. sylvestris and P. uncinata) is recorded in archaeological layers dated at ca 23,900 BP, during the Full Glacial. The abundance of remains identified as Pinus type sylvestris suggests that this was a frequent taxon, at least at middle altitudes. Significant occurrences were recorded up until ca 11,000 BP, at the end of the Lateglacial warming period. From the early Holocene onwards the presence of Pinus type sylvestris is recorded only sporadically, but at least up to 2000 years ago. The competition with other tree and shrub species favoured by the Holocene warming may have triggered the decline of highland pines in Portugal. Eventual anthropogenic impact is also considered as playing a role in its regional decline, such as increasing fire frequency resulting from amplified land use since the Neolithic.  相似文献   

10.
The Sierra Nevada of southern Spain is a landscape with a rich biological and cultural heritage. The range was extensively glaciated during the late Pleistocene. However, the postglacial paleoecologic history of the highest range in southern Europe is nearly completely unknown. Here we use sediments from a small lake above present treeline – Laguna de Río Seco at 3020 m elevation – in a paleoecological study documenting over 11,500 calendar years of vegetation, fire and climate change, addressing ecological and paleoclimatic issues unique to this area through comparison with regional paleoecological sequences. The early record is dominated by Pinus pollen, with Betula, deciduous Quercus, and grasses, with an understory of shrubs. It is unlikely that pine trees grew around the lake, and fire was relatively unimportant at this site during this period. Aquatic microfossils indicate that the wettest conditions and highest lake levels at Laguna de Río Seco occurred before 7800 cal yr BP. This is in contrast to lower elevation sites, where wettest conditions occurred after ca 7800. Greater differences in early Holocene seasonal insolation may have translated to greater snowpack and subsequently higher lake levels at higher elevations, but not necessarily at lower elevations, where higher evaporation rates prevailed. With declining seasonality after ca 8000 cal yr BP, but continuing summer precipitation, lake levels at the highest elevation site remained high, but lake levels at lower elevation sites increased as evaporation rates declined. Drier conditions commenced regionally after ca 5700 cal yr BP, shown at Laguna de Río Seco by declines in wetland pollen, and increases in high elevation steppe shrubs common today (Juniperus, Artemisia, and others). The disappearance or decline of mesophytes, such as Betula from ca 4000 cal yr BP is part of a regional depletion in Mediterranean Spain and elsewhere in Europe from the mid to late Holocene. On the other hand, Castanea sativa increased in Laguna de Río Seco record after ca 4000 cal yr BP, and especially in post-Roman times, probably due to arboriculture. Though not as important at high than at low elevations, fire occurrence was elevated, particularly after ca 3700 years ago, in response to regional human population expansion. The local and regional impact of humans increased substantially after ca 2700 years ago, with the loss of Pinus forest within the mountain range, increases in evidence of pasturing herbivores around the lake, and Olea cultivation at lower elevations. Though human impact was not as extensive at high elevation as at lower elevation sites in southern Iberia, this record confirms that even remote sites were not free of direct human influence during the Holocene.  相似文献   

11.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

13.
A vibrocore from the sea floor of the southern North Sea provides a ~1,500-year record of early Holocene vegetation history and mire development in a landscape now 33 m below sea-level. Pollen, plant macrofossil and geochemical analyses of an AMS 14C dated sand–peat–marine mud sequence document the paludification on Pleistocene sands ~10,700 cal BP, the subsequent development of eutraphentic carr vegetation and the gradual inundation by the transgressing sea ~9,350 cal BP. PinusCorylus woodland prevailed on terrestrial grounds after hazel had immigrated ~10,700 cal BP. Salix dominated the carr vegetation throughout 1,300 years of peat formation, because Alnus did not spread in the Borkum Riffgrund area until 9,300 BP. Brackish reed vegetation with Phragmites established after inundation and siliciclastic marine sediments were being deposited. This article also examines the detection and suitability of key horizons indicative of marine influence. XRF-Scanning provides the most detailed results in the briefest possible time to pinpoint spectra best suitable for AMS 14C dating of classical key horizons such as start of peat formation and transgressive contact. The combined application of botanical and geochemical methods allows determining new key horizons indicative of marine influence, namely the earliest marine inundation and the onset of sea-level influence on coastal ground water level.  相似文献   

14.
Holocene variations in annual precipitation (Pann) were reconstructed from pollen data from southern Argentinian Patagonia using a transfer function developed based on a weighted-averaging partial least squares (WA-PLS) regression. The pollen–climate calibration model consisted of 112 surface soil samples and 59 pollen types from the main vegetation units, and modern precipitation values obtained from a global climate database. The performance (r2 = 0.517; RMSEP = 126 mm) of the model was comparable or slightly lower than in other comparable pollen–climate models. Fossil pollen data were obtained from a sediment core from Cerro Frias site (50°24'S, 72°42'W) located at the forest-steppe ecotone. Reconstructed Pann values of about 200 mm suggest dry conditions during the Pleistocene–Holocene transition (12,500–10,500 cal yr BP). Pann values were about 300–350 mm from 10,500 to 8000 cal yr BP and increased to 400–500 mm between 8000 and 1000 cal yr BP. An abrupt decrease in Pann at about 1000 cal yr BP was associated with a Nothofagus decline. The reconstructed Pann suggests a weakening and southward shift of the westerlies during the early Holocene and intensification, with no major latitudinal shifts, during the mid-Holocene at high latitudes in southern Patagonia.  相似文献   

15.
The Late Neolithic pile‐dwelling of Palù di Livenza yielded archaeological remains typical of the Square Mouth Pottery and Lagozza Cultures. A palynological investigation reveals important changes in the vegetation due to anthropogenic pressure. Between ca. 6590 and 5960 cal. yr BP, dense oak wood forests with deciduous Quercus, Fagus and Corylus extended around the mire, with no signs of human impact. The establishment of the pile‐dwelling, dated to ca. 5960 cal. yr BP, led to a strong reduction of forests, reclamation of wetlands, and expansion of herbaceous communities, with cultivated species, infestant weeds, nitrophilous and ruderal herbs, pastures and meadows. According to AMS dates and previous archaeological chronologies, the pile‐dwelling persisted for about 700 years (from ca. 5960 to 5260 cal. yr BP). The history of the pile‐dwelling after ca. 5260 cal. yr BP cannot be reconstructed because of recent contamination of the top part of the section. Rarefaction analysis was applied to estimate changes of palynological richness through time: the highest E(Tn) (between 56 and 69 taxa) are contemporaneous with the local development of the pile‐dwelling. The comparison of pollen data with archaeobotanical evidence indicates that Fragaria vesca, Malus sylvestris, Papaver somniferum and Physalis alkekengi were gathered at some distance from the site and that Linum usitatissimum is strongly under‐represented in pollen samples. Crop cultivation can be estimated for a radius of several hundred metres around the mire. Palù di Livenza is significant in the context of Neolithic archaeobotany of northern Italy and neighbouring countries. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A GIS-based palaeogeographic reconstruction of the development of the Baltic Ice Lake (BIL) in the eastern Baltic during the deglaciation of the Scandinavian Ice Sheet is presented. A Late Glacial shoreline database containing more than 1000 sites from Finland, NW Russia, Estonia, Latvia and modern digital terrain models were used for palaeoreconstructions. The BIL occupied five different levels, represented by 492 shoreline features. The study shows that at about 13.3 cal. ka BP the BIL extended to the ice-free areas of Latvia, Estonia and NW Russia, represented by the highest shoreline in this region. Reconstructions demonstrate that BIL initially had the same water level as the Glacial Lakes Peipsi and Võrtsjärv, because these water bodies were connected via strait systems in central Estonia. These strait systems were closed at about 12.8–11.7 cal. ka BP prior to the final drainage of the BIL due to isostatic uplift. Glacial Lake Võrtsjärv was isolated from the BIL at about 12.4–12.0 cal. ka BP. Exact timing of Glacial Lake Peipsi isolation is not clear, but according to the altitude of the threshold in northeast Estonia and shore displacement data it was completed at about 12.4–11.7 cal. ka BP.  相似文献   

17.
A growing body of evidence implies that the concept of 'treeless tundra' in eastern and northern Europe fails to explain the rapidity of Lateglacial and postglacial tree population dynamics of the region, yet the knowledge of the geographic locations and shifting of tree populations is fragmentary. Pollen, stomata and plant macrofossil stratigraphies from Lake Kurjanovas in the poorly studied eastern Baltic region provide improved knowledge of ranges of north‐eastern European trees during the Lateglacial and subsequent plant population responses to the abrupt climatic changes of the Lateglacial/Holocene transition. The results prove the Lateglacial presence of tree populations (Betula, Pinus and Picea) in the eastern Baltic region. Particularly relevant is the stomatal and plant macrofossil evidence showing the local presence of reproductive Picea populations during the Younger Dryas stadial at 12 900–11 700 cal. a BP, occurring along with Dryas octopetala and arctic herbs, indicating semi‐open vegetation. The spread of PinusBetula forest at ca. 14 400 cal. a BP, the rise of Picea at ca. 12 800 cal. a BP and the re‐establishment of PinusBetula forest at ca. 11 700 cal. a BP within a span of centuries further suggest strikingly rapid, climate‐driven ecosystem changes rather than gradual plant succession on a newly deglaciated land. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Many German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater‐fed lake with a complex basin morphology, an acoustic sub‐bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, μ‐XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of ~8 m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3 m (AD 1973–2010). Past lake level changes were traced continuously using the calcium‐record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub‐basins and allowed carbonate deposition. During the beginning of the Holocene (>9700 cal. a BP), lake levels were high, probably due to final melting of permafrost and dead‐ice remains. The establishment of water‐use intensive Pinus forests caused generally low (3–4 m below modern) but fluctuating lake levels (9700–6400 cal. a BP). Afterwards, the lake showed an increasing trend and reached a short‐term highstand at c. 5000 cal. a BP (4 m above modern). At the transition towards a cooler and wetter late Holocene, forests dominated by Quercus and Fagus and initial human impact probably contributed more positively to groundwater recharge. Lake levels remained high between 3800 and 800 cal. a BP, but the lake system was not sensitive enough to record short‐term fluctuations during this period. Lake level changes were recorded again when humans profoundly affected the drainage system, land cover and lake trophy. Hence, local Holocene water level changes reflect feedbacks between catchment and vegetation characteristics and human impact superimposed by climate change at multiple temporal scales.  相似文献   

19.
Fossil pollen, plant macrofossils, gastropods, and elemental and stable-isotope geochemistry in a sediment core from Twiss Marl Pond, southern Ontario, Canada, were used to document climate oscillations during the Last Glacial–Interglacial transition (13,000–8500 14C BP) and understand their ecological effects. Chronology was provided by AMS 14C dating and regional pollen correlation. Oxygen isotope (δ18O) results from mollusc shells, Chara-encrustations and bulk carbonates show a classic climate sequence of a warm Bølling–Allerød (BOA) at 12,500–10,920 14C BP, a cold Younger Dryas (YD) at 10,920–10,000 14C BP, the Holocene warming at 10,000 14C BP, a brief Preboreal Oscillation (PB) at 9650 14C BP, and a possible Gerzensee/Killarney (G/K) cooling shortly before 11,000 14C BP.Clay sediments at the base of the core contain high herb and shrub pollen and abundant arctic/alpine plant macrofossils, indicating a treeless tundra with severe soil erosion in watershed. During the BOA warm period, authigenic marl began to be deposited, and Picea woodland became established. The establishment of Picea woodland after peaks of δ18O and of carbonate accumulation suggests a lagged response of upland vegetation to BOA warming. In contrast, the occurrence of warmth-loving aquatics Najas flexilis and Typha latifolia at that time indicates sensitive responses of aquatic plants. The YD cooling is indicated by a 1.5‰ negative excursion in δ18O, an increase in minerogenic matter and higher concentrations of erosion-derived elements (Al, Na, K, Ti and V). Pollen data show no forest transformation in response to YD cooling, which is attributed to the insensitive nonecotonal vegetation at that time. However, more openings in the forests and increased erosion in the watershed are indicated by a slight increase of herb pollen, high concentrations of erosion elements and a Pediastrum peak. The onset of the Holocene was marked by an abrupt increase of 2‰ in δ18O and the replacement of Picea woodland by Pinus-dominated forest. The Picea recurrence at 9650 14C BP demonstrates sensitive response of ecotonal vegetation to the PB climate oscillation, which is also indicated by 0.4‰ negative excursion of δ18O. These new results suggest the importance of multiproxy records for reliable paleoclimate reconstruction.Reevaluation and revised chronologies of previously published sites (Gage Street, and Nichols Brook) in the eastern Great Lakes region show their major δ18O shifts correlative to the YD and PB oscillations as documented from Twiss Marl Pond and nearby Crawford Lake. The sequence and magnitude of climatic oscillations from these sites match in detail with records from the Atlantic Seaboard, suggesting that these oscillations are an expression of broad-scale, probably global, climate change rather than local meltwater-induced climate cooling.  相似文献   

20.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号