首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Since the Viking missions in 1976, magnesium sulfates have been predicted to exist on the surface of Mars. Recent orbital measurements suggest that Mg-sulfates are rather ubiquitous on the martian surface. Chemical analyses by landers support the inference that Mg-sulfate hydrates may be one source of the significant quantities of equatorial near-surface hydrogen observed by the neutron and γ-ray spectrometers on the Mars Odyssey spacecraft. The present study was undertaken to examine stability relations among the various Mg-sulfate hydrates. Using saturated salt solutions to control water-vapor pressure at temperatures of 3, 23, 50, 63, and 75 °C, Mg-sulfate phases were allowed to equilibrate from 2 to 3 months to see which hydration states were formed or were stable. Starting materials consisted of hexahydrite (6H2O), starkeyite (4H2O), kieserite (1H2O), a second monohydrate-polymorph available as a chemical reagent, and an anhydrous MgSO4 reagent. Products created in this study included these minerals, along with epsomite (7H2O), sanderite (2H2O), amorphous MgSO4 (1-2H2O), several previously undescribed phases, one of which was quite persistent (2.4H2O), and trace amounts of pentahydrite (5H2O). As expected, Mg-sulfate stability is strongly dependent on water vapor pressure and temperature. Lower temperatures favor the more hydrated Mg-sulfates. However, the MgSO4 system was found to be surprisingly complicated and is strongly dominated by metastability, sluggish kinetics, and reaction pathways. Unexpected results were frequently encountered, in addition to the formation of previously undescribed phases. Several of the hydrates also show significant metastable extensions, such that phase boundaries can only be approximated. For example, kieserite, which has been reported on Mars from OMEGA data, in addition to having a distinct stability region, is resistant to transformation and persists throughout temperature-RH space until very high relative humidities are achieved. Results of this study show that MgSO4 hydrates in addition to epsomite, hexahydrite, and kieserite can persist and should not be overlooked when assessing possible Mg-sulfate minerals that can occur on Mars.  相似文献   

2.
Shock recovery experiments on MgSO4, CaSO4, and their hydrates (kieserite, epsomite, and bassanite) were performed to investigate shock-induced dehydration and decomposition at shock pressures up to 36 GPa. The recovered solid samples indicated dehydration at pressures below 24 GPa, but no clear evidence was found for possible decomposition of MgSO4 and CaSO4 to produce MgO or CaO as final products. These sulfates and hydrates have been observed on the surface of Mars, and the present experimental results can be applied towards understanding the presence of surface water on Mars and the recycling of water by impacts. This finding that the sulfate hydrates undergo dehydration upon impact, as well as the fact that the sulfates CaSO4 and MgSO4 absorb moisture, suggests the total amount of water on Mars has remained almost unchanged since the time of formation of the planet.  相似文献   

3.
The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars.The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-H2O system.The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as lepidocrocite, schwertmannite, ferricopiapite, copiapite, and bilinite may also be present on the surface of Mars. Evaporation or freezing of the Martian brine led to similar mineral precipitates. However, in freezing, compared to evaporation, the following key differences were found: (1) magnesium sulfates had higher hydration states; (2) there was greater total aqueous sulfate (SO4T = SO4 + HSO4) removal; and (3) there was a significantly higher aqueous Cl/SO4T ratio in the residual Na-Mg-Cl brine. Given the similarities of model results to observations, alternating dry/wet and freeze/thaw cycles and brine migration could have played major roles in vug formation, Cl stratification, and hematite concretion formation on Mars.  相似文献   

4.
天然气水合物的晶体结构主要取决于客体分子种类与组成,目前单组分水合物的结构和谱学特征较为明确,但多组分水合物相关研究较少.为解决多组分水合物的结构识别问题,探讨其谱学特征,本文实验合成了甲烷-丙烷(CH4-C3 H8)和甲烷-四氢呋喃(CH4-THF)两种含CH4双组分水合物以及CH4、C3 H8和THF等三种单组分水...  相似文献   

5.
The martian soil is a fine-grained regolith that is chemically basaltic in character with evidence for both gains and losses of volatile and mobile elements compared to martian basalt compositions. These chemical fractionations provide clues to geochemical processes on the surface of Mars. Geochemical processes contributing to the soil proposed in the past include the chemical and mechanical breakdown of rocks under surface conditions, the addition of volcanic aerosols containing S and Cl compounds, and the alteration of basaltic glass to palagonite. Our studies of terrestrial analogs suggest that hydrothermal alteration processes involving impact craters and volcanism could also contribute to the major element trends observed in martian soil. Data from Viking, Pathfinder, and the current MER missions consistently show that relative to basaltic martian meteorite compositions, the major element compositions of the soils are (1) depleted in the fluid-mobile element calcium, (2) generally similar or somewhat enriched in iron oxide and magnesium but MgO depleted compared to Gusev rocks, (3) locally variable in potassium, (4) possibly poorer in aluminum, and (6) very enriched in chlorine and sulfur. The major element trends, aside from the Cl and S enrichment, could be explained by the formation or addition of palagonite according to McSween and Keil (2000), but the missing CaO remains a problem. The chlorine and sulfur are probably derived from other processes such as volcanic aerosols and hydrothermal fluids. McSween and Keil (2000) also argued that hydrothermal alteration of basalts produce alteration trends that are inconsistent with the Mars soil, but this study concludes otherwise. We have used quantitative mass balance mixing models to investigate possible models involving mixtures of basaltic compositions with different types of alteration materials, including palagonite. We show that the Mars soil composition can be matched with a combination of unweathered basaltic martian meteorites with basaltic FeO-rich, CaO-poor alteration products. Palagonite is a possible, but not a necessary component of successful model mixtures. The hydrothermal alteration materials that form successful model mixtures are formed in low temperature, low water/rock ratio environments, and they can reproduce the required geochemical trends because they are poorer in CaO but not in FeO compared to their respective protoliths. These results argue that material altered by hydrothermal processes could be a plausible component of the soil, and that removal of CaO from the soil into some undiscovered reservoir after its formation is not required. The current soil on Mars, therefore, did not have to undergo an episode of in situ aqueous alteration but could represent a sink for materials that experienced aqueous processes in a different setting before erosion to form the soil. The soil can also represent a sink for mobile elements (e.g., S, Cl, and Br) derived from other sources such as volcanic aerosols and hydrothermal fluids.  相似文献   

6.
Magnesium sulfate salts have been linked to the decay of stone in the field and in laboratory experiments, but the mechanism of damage is still poorly understood. Thermomechanical analysis shows that expansion of stone contaminated with magnesium sulfate salts occurs during drying, followed by relaxation of the stress during dehydration of the precipitated salts. We applied thermogravimetric analysis and X-ray diffractometry to identify the salt phases that precipitate during drying of bulk solutions. The results show the formation of 11 different crystal phases. A novel experiment in which a plate of salt-laden stone is bonded to a glass plate is used to demonstrate the existence of crystallization pressure: warping of the composite reveals significant deformation of the stone during re-wetting of lower hydrates of magnesium sulfate. Environmental scanning electronic microscope (ESEM)/STEM experiments show that hydration of single crystals of the lower hydrates of magnesium sulfate is a through-solution crystallization process that is only visible at a small scale (~μm). It is followed by growth of the crystal prior to deliquescence. This demonstrates that crystallization pressure is the main cause of the stress induced by salt hydration. In addition, we found that drying-induced crystallization is kinetically hindered at high concentration, which we attribute to the low nucleation rate in a highly viscous magnesium sulfate solution.  相似文献   

7.
了解天然气水合物的微观结构特征对水合物资源勘探和评价具有重要意义。采用显微激光拉曼光谱技术,对青海聚乎更钻探区内DK8-19、DK11-14 和DK12-13等3个站位共9个天然气水合物岩心样品进行了分析测试,探讨了钻探区天然气水合物的拉曼光谱特征。结果表明,青海聚乎更钻探区天然气水合物广泛分布,垂直方向在126.1~322.2 m范围内不连续分布,不同钻孔、不同埋深水合物样品的拉曼光谱特征基本一致,初步判断为Ⅱ型结构水合物,且为多元气体水合物。水合物客体除甲烷、乙烷、丙烷及丁烷等 烷烃外,普遍含有氮气组分。此外,在DK8-19站位埋深为126.1 m样品中发现水合物相中硫化氢组分的拉曼信号,这说明特定区域内可能存在硫化氢气体且形成了水合物。聚乎更钻探区水合 物样品拉曼光谱特征为冻土区天然气水合物成藏与分布规律研究提供了新的启示。  相似文献   

8.
The sulfation of four types of calcitic and dolomitic lime mortars exposed to SO2 in the presence of particulate matter from diesel vehicle exhaust emissions has been investigated. The binders mineralogy and mortars texture are the main factors influencing the formation of deleterious sulfate salts. The type of binder also influences the pore size distribution and the total porosity of the mortars: for equal aggregate (quartz or dolomite), dolomitic lime mortars have smaller pores and higher porosity than calcitic ones. During the first 24 h exposure to SO2, calcitic lime mortars undergo a higher weight increase than dolomitic ones due to rapid formation of gypsum on their surface. However, at the end of the sulfation test (10 days), dolomitic mortars show a higher weight increase due to massive formation of epsomite and gypsum, which is facilitated by their higher porosity and the high reactivity of Mg phases in the porous and partially carbonated binder. Control samples (not covered with diesel particulate matter) also develop calcium and magnesium sulfates upon long term exposure to SO2. This is due to the presence of uncarbonated Ca and Mg hydroxides that promote SO2 fixation as sulfates. However, the amount and size of sulfate crystals are significantly smaller than those observed on samples covered with diesel particulate matter. These results show that diesel particulate matter enhances the sulfation of lime mortars and demonstrate that sulfation of dolomitic lime is an important mechanism for the in situ formation of highly soluble and deleterious hydrated magnesium sulfates (epsomite and hexahydrite). The use of dolomitic limes in the conservation of monuments exposed to air pollution in urban environments may therefore pose a significant risk.  相似文献   

9.
The knowledge of Martian salts has gone through substantial changes during the past decades. In the 70th of last century, Viking landers have noticed the existence of salts on Mars. Several salt species have been suggested from then on, such as sulfates and chlorides. However, their origin was a mystery due to the lack of observations. The recent explorations and related studies at the beginning of this century revealed that the crustal composition of Mars is similar to that of Earth, and it was hypothesized that almost one third of Martian surface was covered by oceans and lakes in the early stage of Mars. The huge water bodies may have dissolved a large quantity of ions from Martian primary rocks during the whole Noachian and Hesperian epoch. After the enormous drought event happened during the late Hesperian and the early Amazonian, these dissolved ions have formed huge salts deposits and most of them were preserved on Mars until today. To date, carbonates, sulfates, chlorides have all been detected by orbital remote sensing and by landers and rovers. However, the salt mineral assemblages on Mars seems to have some differences from those on Earth, e.g., rich in sulfates and lack of massive carbonates. To explain this difference, we propose that most of the surface carbonates precipitated from the ancient oceans may have been dissolved by the later ubiquitous acidic fluids originated from the global volcanism in the Hesperian era, and formed the enormous sulfate deposits as detected, and this hypothesis seems to be supported by the evidence that most of the sulfate deposits distribute around the Tharsis volcanic province while the survived carbonates located far from it. This process can release most of the carbon on Mars to the atmosphere in the form of CO2 and then be erased by the late heavy bombardments, which might have profound influence on the climate change happened in the Hesperian age. The positive correlation between the GRS results of the potassium distributions and the distribution of chlorides on Mars, together with the high Br concentration measured from the evaporate sediments at two Mars exploration rover landing sites, indicate that the brines in the regions where the chlorides deposited may have reached the stage for potassium salts deposition, thus we propose for the first time that potassium salts deposits might be prevalent in these regions.  相似文献   

10.
The importance of the discovery of jarosite at the Meridiani Planum region of Mars is discussed. Terrestrial studies demonstrate that jarosite requires a unique environment for its formation, crystallizing from highly acidic (pH < 4) S-rich brines under highly oxidizing conditions. A likely scenario for jarosite formation on Mars is that degassing of shallow magmas likely released SO2 that reacted with aqueous solutions in shallow aquifers or on the martian surface. This interaction forms both H2SO4 and H2S. A martian oxidant must be identified to both oxidize H2S to produce the required acidity of the fluid, and to oxidize Fe2+ to Fe3+. We suggest that reactions involving both sulfur and the reduction of CO2 to CO may provide part of the answer. The jarosite crystal structure is truly remarkable in terms of its tolerance for the substitution of a large number of different cations with different ionic radii and charges. The structure accommodates hydrogen, oxygen, and sulfur, the stable isotope systematics of which are strong recorders of low-temperature fluid-rock-atmosphere interactions. Jarosite has been proven to be a robust chronometer for Ar-Ar and K-Ar dating techniques, and there is every reason to believe that U-Pb, Rb-Sr, and Nd-Sm techniques for older jarosite from Mars will also be robust. Although the discovery of jarosite on Mars alone, with no other analytical measurements on the phase, has given us insights to martian surficial processes, the true power of jarosite can not be exploited until jarosite is sampled and returned from Mars. Mars sample return is a long way off but, until then, we should be vigilant about examining martian meteorites for alteration assemblages that contain jarosite. A suite of jarosite samples representing a significant time span on Mars may hold the key to reading the record of martian atmospheric evolution.  相似文献   

11.
祁连山冻土区天然气水合物激光拉曼光谱特征   总被引:2,自引:0,他引:2  
采用显微激光拉曼光谱技术在77K和常压下对祁连山木里煤田聚乎更矿区钻获的冻土区天然气水合物进行了测试,得到中国冻土区天然气水合物典型的激光拉曼谱图,从微观角度证实DK3孔的133.30m、139.52~139.92m和141.00m 3段不同埋深的岩心中均有天然气水合物存在。对冻土区水合物的拉曼谱图进行详细研究,结合文献资料,初步判定3段不同埋深的水合物结构均为sⅡ型,并参照不同客体气体分子的特征振动信号对谱线的归属进行分析,得出了水合物中大致所含的气体组分。  相似文献   

12.
Sulfate Attack on Concrete in an Inland Salt Lake Environment   总被引:2,自引:0,他引:2  
INTRODUCTIONSulfate attack is one of the reasons for concretestructures deteriorating earlier than usual,thusshowing poor durability.The SO42-from the sur-rounding environment such as ocean,saline,groundwater,and even the concrete itself,reacts with thehydration products of cement,whichleads to the de-terioration of the concrete(Li et al.,2000;Kang,1995;Neville,1983;Samarai,1976).The deteriora-tionincludes three processes:the external swelling,cracking,peeling,and disjointing caused by …  相似文献   

13.
The deprotonation and iron complexation of the hydroxamate siderophore, desferrioxamine B (desB), and a model hydroxamate ligand, acetohydroxamic acid (aHa), were studied using infrared, resonance Raman and UV-vis spectroscopy. The experimental spectra were interpreted by a comparison with DFT calculated spectra of aHa (partly hydrated) and desB (reactive groups of unhydrated molecule) at the B3LYP/6-31G* level of theory. The ab initio models include three water molecules surrounding the deprotonation site of aHa to account for partial hydration. Experiments and calculations were also conducted in D2O to verify spectral assignments. These studies of aHa suggest that the cis-keto-aHa is the dominant form, and its deprotonation occurs at the oxime oxygen atom in aqueous solutions. The stable form of iron-complexed aHa is identified as Fe(aHa)3 for a wide range of pH conditions. The spectral information of aHa and an ab initio model of desB were used to interpret the chemical state of different functional groups in desB. Vibrational spectra of desB indicate that the oxime and amide carbonyl groups can be identified unambiguously. Vibrational spectral analysis of the oxime carbonyl after deprotonation and iron complexation of desB indicates that the conformational changes between anion and the iron-complexed anion are small. Enhanced electron delocalization in the oxime group of Fe-desB when compared to that of Fe(aHa)3 may be responsible for higher stability constant of the former.  相似文献   

14.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

15.
Three types of zircon coexist in an unusual lower crustal xenolith from the Valle Guffari diatreme (Hyblean Plateau, Sicily): igneous Type 1 (near-euhedral, weakly zoned; Ce/Ce > 1); partially recrystallised Type 2 (ovoid, structureless; weak Ce anomaly); hydrothermal Type 3 (sugary, spongy-textured, probably related to F-rich aqueous fluids). U–Pb dating by LAM-ICPMS, supported by in situ Hf-isotope analysis, suggests that both Type 1 and Type 2 zircons were originally Archean (ca 2.7 Ga), though many of these grains have experienced severe Pb loss. The U–Pb ages of the hydrothermal zircons cluster around 246 Ma, interpreted as the timing of the hydrothermal event. Their εHf (+ 8.5 to − 1.2) indicates the mixing of old crustal components and material from a juvenile source.

In situ Os-isotope analyses of sulfides hosted in peridotite xenoliths from Valle Guffari show Paleoproterozoic–Archean TRD minimum ages, corresponding to the age of the oldest zircon grains in the crustal xenolith. Other peaks of TRD ages suggest that multiple metasomatic events have affected the lithospheric mantle.

These observations suggest that the lower crust and the upper part of the lithospheric mantle beneath the Hyblean Plateau represent the northernmost portion of the African Plate. These two units have coexisted since at least late Archean time, and have remained linked through several episodes of crustal modification, including the Permo-Triassic hydrothermal event, which was probably related to the onset of rifting in the Ionian Basin.  相似文献   


16.
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.  相似文献   

17.
Low-temperature aqueous processes have been implicated in the generation of jarosite and hematite on the martian surface, but little is known regarding the role that high-temperature magmatic fluids may have played in producing similar assemblages on Mars. We have identified jarosite and hematite in a clinopyroxene-hosted melt inclusion in martian meteorite MIL 03346 that shows evidence of having been hydrothermally precipitated. In addition to jarosite and hematite, the melt inclusion contains titanomagnetite, pyrrhotite, potassic-chlorohastingsite, an iron-rich silicate glass and possibly goethite. These phases were identified and characterized using scanning electron microscopy (SEM), con-focal Raman-spectroscopy and electron probe microanalysis (EPMA).Based on observed textural relationships and the compositions of the hosted phases, we report that the jarosite-bearing melt inclusion in MIL 03346 has recorded a fluid-rich history that began in the magmatic stage and continued to low-temperatures. This history begins at entrapment of a volatile-rich silicate melt that likely reached fluid-saturation after only minor crystallization within the melt inclusion. This fluid, rich in chlorine, reacted with surrounding silicate material to produce the potassic-chlorohastingsite. As cooling proceeded, the liquid phase eventually became more oxidized and reacted with the pyrrhotite. Sulfide oxidation resulted in SO42− formation and concomitant acid production, setting the stage for jarosite formation once the fluid cooled beyond the upper thermal stability of jarosite (∼200 °C). As the fluid cooled below 200 °C, jarosite continued to precipitate with hematite and/or goethite until equilibrium was established or reactions became kinetically unfavorable.This work suggests an additional jarosite-hematite formation pathway on Mars; one that may be important wherever magmatic-hydrothermal fluids come into contact with primary sulfide grains at the martian surface or subsurface. Moreover, hydrothermal fluids rich in chlorine, sulfur, and iron are important for ore-forming processes on Earth, and their indirect identification on Mars may have important implications for ore-formation on Mars.  相似文献   

18.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

19.
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines.FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases.There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water chemistry over short distances, reflecting the interaction of acid ground waters with neutral to alkaline lake waters derived from ponded surface runoff. Meridiani Planum observations indicate that such lateral variations are much less pronounced, pointing to the dominant influence of ground water chemistry, vertical ground water movements, and aeolian processes on the Martian surface mineralogy.  相似文献   

20.
束今赋 《地学前缘》2020,27(3):133-153
上天、入地、下海,进行极端条件下的矿物学研究,研究微矿物,发现新矿物。主要利用金刚石压机,结合使用国内外同步辐射X-光源、中子源,以及其他多种物理的、化学的、光学的测试手段(如岩石矿物化学分析,光薄片测定,电子探针,离子探针,扫描电镜,透射电镜,红外、紫外、拉曼光谱,激光加热等),对来自天外的陨石、陨石坑样品、地球深处地幔源矿物以及海底甲烷水合物进行了一些研究。模拟不同温度和压力下各种不同成分的矿物材料的晶体结构、物理和化学性质。文章着重研究从地球内核到地壳海底的各种不同组分在不同温度、压力极端环境下形成的各种各样的典型矿物:从金属固体内核和金属液体外核中的ε-Fe到核幔边界(CMB)地球D″层的后钙钛矿(Post-Perovskite)结构(ppv)镁铁硅酸盐(Mg,Fe)SiO3,从下地幔中的铁磁性钙钛矿(Perovskite)结构(pv)镁铁硅酸盐布里奇曼石(Bridgmanite)(Mg,Fe)SiO3、镁铁氧化物(Fe,Mg)O和后尖晶石(Post-Spinel)结构的含Fe3+毛河光矿(Maohokite)(HP-Mg$Fe^{3+}_{2}O_{4}$)到过渡带、上地幔和地壳中的镁铁硅酸盐、硅氧化物、铬铁氧化物和金刚石及其内含物以及甲烷水合物(CH4·H2O)等。进行高温高压极端条件下的矿物学研究,为探索地球结构性质、形成动力和发展历史提供了新的窗口。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号