首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tree-ring reconstruction of summer temperatures from northern Patagonia shows distinct episodes of higher and lower temperature during the last 1000 yr. The first cold interval was from A.D. 900 to 1070, which was followed by a warm period A.D. 1080 to 1250 (approximately coincident with theMedieval Warm Epoch). Afterwards a long, cold-moist interval followed from A.D. 1270 to 1660, peaking around 1340 and 1640 (contemporaneously with earlyLittle Ice Age events in the Northern Hemisphere). In central Chile, winter rainfall variations were reconstructed using tree rings back to the year A.D. 1220. From A.D. 1220 to 1280, and from A.D. 1450 to 1550, rainfall was above the long-term mean. Droughts apparently occurred between A.D. 1280 and 1450, from 1570 to 1650, and from 1770 to 1820. In northern Patagonia, radiocarbon dates and tree-ring dates record two major glacial advances in the A.D. 1270–1380 and 1520–1670 intervals. In southern Patagonia, the initiation of theLittle Ice Age appears to have been around A.D. 1300, and the culmination of glacial advances between the late 17th to the early 19th centuries.Most of the reconstructed winter-dry periods in central Chile are synchronous with cold summers in northern Patagonia, resembling the present regional patterns associated with the El Niño-Southern Oscillation (ENSO). The years A.D. 1468–69 represent, in both temperature and precipitation reconstructions from treerings, the largest departures during the last 1000 yr. A very strong ENSO event was probably responsible for these extreme deviations. Tree-ring analysis also indicates that the association between a weaker southeastern Pacific subtropical anticyclone and the occurence of El Niño events has been stable over the last four centuries, although some anomalous cases are recognized.  相似文献   

2.
The zenith of Anasazi Pueblo Indian occupation in the northern Colorado Plateau region of the southwestern U.S.A. coincides with the Little Climatic Optimum or Medieval Warm Period (A.D. 900–1300), and its demise coincides with the commencement of the Little Ice Age. Indexes of winter (jet-stream derived) and summer (monsoon derived) precipitation and growing season length were developed for the La Plata Mountains region of southwestern Colorado. The results show that during the height of the Little Climatic Optimum (A.D. 1000–1100) the region was characterized by a relatively long growing season and by a potential dry farming zone or elevational belt (currently located between 2,000 m and 2,300 m elevation) that was twice as wide as present and could support Anasazi upland dry farming down to at least 1,600 m, an elevation that is quite impossible to dry farm today because of insufficient soil moisture. This expanded dry-farm belt is attributable to a more vigorous circulation regime characterized by both greater winter and summer precipitation than that of today. Between A.D. 1100 and 1300 the potential dry-farm belt narrowed and finally disappeared with the onset of a period of markedly colder and drier conditions than currently exist. Finally, when the Little Ice Age terminated in the mid A.D. 1800s and warmer, wetter conditions returned to the region, another group of farmers (modern Anglos) were able to dry farm the area.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

3.
Owen K. Davis 《Climatic change》1994,26(2-3):271-287
Decreased solar activity correlates with positive cosmogenic isotope anomalies, and with cool, wet climate in temperate regions of the world. The relationship of isotope anomalies to climate may be the opposite for areas influenced by monsoonal precipitation, i.e., negative anomalies may be wet and warm. Petersen (1988) has found evidence for increased summer precipitation in the American Southwest that can be shown to be coincident with negative14C anomalies during the Medieval Warm Period. The present study compares palynological indicators of lake level for the Southwest with Petersen's data and with the14C isotope chronology. Percentages of aquatic pollen and algae from three sites within the Arizona Monsoon record greater lake depth or fresher water from A.D. 700–1350, between the Roman IV and Wolf positive isotope anomalies, thereby supporting Petersens's findings. Maximum summer moisture coincides with maximum population density of prehistoric people of the Southwest. However, water depth at a more northern site was low at this time, suggesting a climateisotope relationship similar to that of other temperate regions. Further analysis of latitudinal patterns is hampered by inadequate14C dating.  相似文献   

4.
Summary Weekly statistics of rainfall occurrence in the North-Central United States show certain preferences for precipitation in early April and early June. Dry spells are most common in late October, Mid-November, Mid-December and at the end of the year. A northward migration of the rainy condition in spring and early summer is linked with a comparable motion of the jet stream. The possible connection of these spells with singularities elsewhere andBowen's rain statistics is discussed but no firm relations can be established.
Zusammenfassung Wöchentliche Werte der Niederschlagswahrschein-lichkeit in der nördlichen Mittelzone der Vereinigten Staaten zeigen bevorzugte Regenperioden zu Anfang der Monate April und Juni. Trockene Wochen sind am häufigsten im Spätoktober, Mitte November, Mitte Dezember und zur Jahreswende. Eine nordwärts gerichtete Wanderung der Regentendenz im Frühling und Frühsommer wird mit einer gleichzeitigen Verschiebung des jet stream in Zusammenhang gebracht. Eine mögliche Beziehung dieser Witterungsfälle zu den Singularitäten in anderen Gegenden und zuBowens Regenstatistik wird erörtert, doch sind gesicherte Beziehungen nicht feststellbar.

Résumé Des valeurs hebdomadaires de la probabilité de pluie dans la zone moyenne septentrionale des Etats-Unis mettent en évidence des périodes pluvieuses particulièrement fréquentes au début des mois d'avril et de juin. Des semaines sèches apparaissent le plus souvent à la fin d'octobre, au milieu de novembre et de décembre et vers le Nouvel-An. Un déplacement vers le Nord de la tendance pluvieuse au printemps et au début de l'été peut être mis en parallèle avec un déplacement simultané du jet stream. On ne peut pas déceler de relations sûres entre ces cas de pluviosité et les singularités dans d'autres régions, pas plus qu'avec la statistique pluvieuse deBowen.


With 4 Figures  相似文献   

5.
Rainfall during the warm season (June 15–October 15) is the most important of the year in terms of flood generation and erosion in rivers of the southern Colorado Plateau. Fluvial erosion of the plateau decreased substantially in the 1930s to early 1940s, although the cause of this change has not been linked to variation of warm-season rainfall. This study shows that a decrease of warmseason rainfall frequency was coincident with and probably caused the decreased erosion by reducing the probability of large floods. Warm-season rainfall results from isolated thunderstorms associated with the Southwestern monsoon and from dissipating tropical cyclones and (or) cutoff low-pressure systems that produce widespread, general rainfall. Warm-season rainfall is typically normal to above normal during warm El Niño-Southern Oscillation (ENSO) conditions. A network of 24 long-term precipitation gages was used to develop an index of standardized rainfall anomalies for the southern Colorado Plateau for the period 1900–85. The index shows that the occurrence of anomalously dry years increased and the occurrence of anomalously wet years decreased after the early 1930s, although 1939–41, 1972, and 1980–84 were anomalously wet. The decrease in warm-season rainfall after the early 1930s is related to a decrease in rainfall from dissipating tropical cyclones, shifts in the incidence of meridional circulation in the upper atmosphere, and variability of ENSO conditions.  相似文献   

6.
江淮流域梅雨期降水与10—30d低频振荡的联系   总被引:1,自引:0,他引:1  
利用1961--2010年中国756站逐日降水资料和NCEP/NCAR逐日再分析资料,分析了江淮流域梅雨期降水与10~30d低频振荡的关系。结果表明,梅雨偏多年降水具有明显的10~30d的周期变化,低频振荡经向上的北传和纬向上的西传与江淮流域梅雨期降水的活跃及中断关系密切。在梅雨偏多年,低层10~30d振荡主要通过南海低频反气旋和日本海低频气旋对江淮流域降水产生影响,并调控着西太平洋副热带高压的西进、东退,进而影响输送到江淮流域的水汽强度及冷暖空气在江淮流域的汇合;而高层,亚洲大陆中纬度地区东西向的低频气旋和反气旋影响着南亚高压的位置,从而形成江淮流域低频降水的强弱变化。  相似文献   

7.
Maximum Entropy Spectral Analysis of the annual rainfall series for 1887–1976 (90 years) for Massachusetts (northeastern USA.) shows T = 17.8 (very near the 18.6 year luni-solar signal) as the most prominent periodicity. However, it explains only 12% variance. Also, the next prominent periodicity is T = 2.72 years, i.e. in the QBO (Quasi-Biennial Oscillation, T = 2–3 years) region. Also, regular periodicities account for only 50% variance, leaving 50% as a random component. Hence, predictions are unreliable. Roughly, excess rainfall during 1990–1994 and droughts during 1992–2002 are indicated; but occasional years of opposite behavior cannot be ruled out.  相似文献   

8.
Summary The times taken by ships of the English East India Company (EEIC) to sail from the Cape of Good Hope to St. Helena Island during the 17th, 18th, and early 19th centuries represent proxy measures of the strength and steadiness of the Southeast Trades which are compared with present-day data from the Comprehensive Ocean-Atmosphere Data Set (COADS). Both wind speed and steadiness appear to have reached maxima in the 1760s and increased again, from lower values in the following decade, to the 1820s.These changes need to be further substantiated with the available log entries concerning winds, weather, and rates of progress. A similar fleshing out of fragmentary preinstrumental pre-standardized records with current climatic characteristics is suggested for the routes fanning out east of the Cape towards Arabia, India, China, Indonesia, and Australia.Climate Diagnostics Center, NOAAWith 5 Figures  相似文献   

9.

利用2009—2013年天津地区205个自动气象站的逐时降水资料, 分析了天津地区降水的基本空间分布和日变化特征。结果表明: (1)天津地区降水小时数及小时平均降水强度空间差异明显, 高值区分别位于蓟县北部山区、市区西北侧、滨海新区中南部; (2)天津中北部地区累积降水量峰值主要出现在23—03时, 南部地区则出现在17—19时和04—08时, 降水频次峰值基本都出现在00—09时, 降水强度峰值与累积降水量峰值出现时间类似, 11时为降水强度低谷出现时间; (3)全市傍晚至午夜的降水频次明显较凌晨偏少, 长持续时间(10 h以上)的最大降水易出现在凌晨至清晨, 短时降水(1~4 h)的最大降水易出现在傍晚至午夜; 13—24时多数时次, 无论降水量、频次还是降水强度市区均较其周边地区和沿海地区偏多偏强, 而凌晨多数时次, 市区则以偏少偏弱为主; (4)始于下午至傍晚的降水多为短时降水, 而始于傍晚至凌晨的降水持续时间普遍较长。

  相似文献   

10.

利用高密度地面自动站逐小时降水观测资料,分析了河南省2010-2015年雨季(5-9月)短时强降水(flash heavyrain,FHR)的时空分布特征。主要结果如下:河南省FHR集中发生在7、8月,其中7月最多,8月次之;河南雨季FHR量、降水贡献和发生频率的局地差异明显,主要存在4个大值区,即豫北黄河以北地区、豫东商丘地区、豫西南伏牛山以南以东地区、豫南沿淮及其以南地区;地形对降水的增幅作用显著,且主要是通过增加FHR发生频次实现的;FHR频次日变化呈明显的双峰结构,傍晚至凌晨的前半夜为FHR频发时段;4个大值区内FHR频次日变化差异明显,如黄河以北地区其日变化幅度较大、呈单峰型,而沿淮及其以南地区其日变化幅度较小、呈持续活跃型;大部分FHR前后都伴随着连续降水,降水过程的持续时间主要在1~8 h之间,持续时间大于等于3 h的过程主要位于两个与地形密切相关的高频集中区,即伏牛山以东支脉的喇叭口地形区和沿淮及其以南地区。

  相似文献   

11.
Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.  相似文献   

12.
洪伟  任雪娟  杨修群 《气象学报》2015,73(2):276-290
利用站点降水资料和再分析资料针对华南地区5—8月的持续性强降水过程,分析了低频异常非绝热加热的时空分布特征及其对低频大气环流的可能反馈作用。得到如下结论:5—6月和7—8月华南持续性强降水期间10—30 d低频非绝热加热的演变特征有所不同,5—6月持续性强降水发生前低频非绝热加热大值区从30°N(107°—115°E)以北向南传播发展至华南地区,而在7—8月降水前非绝热加热大值区从中国南海中部向西北方向传播,并在降水最强盛期到达华南。异常环流型控制着持续性强降水的强度和位置,从而决定异常凝结潜热的演变特征。异常凝结潜热则是通过影响涡度倾向变化而对大气环流有一个反馈作用。对于发生在华南5—6月和7—8月的这2组持续性强降水过程,当降水处于发展阶段,在低频非绝热加热作用项和低频涡度平流项的共同作用下,华南上空中层存在显著的10—30 d低频正涡度倾向变化,有利于低频气旋式环流的进一步发展。非绝热加热作用项主要由加热率的垂直梯度决定,涡度平流项则与气候背景风场有密切关系。5—6月持续性强降水期间涡度平流项位于非绝热加热项东侧,而7—8月持续性强降水期间涡度平流项位于非绝热加热项北侧。在持续性强降水的衰亡期,由于非绝热加热项和涡度平流项转为负值,华南被负涡度倾向变化控制,低频气旋式环流迅速消亡。  相似文献   

13.
2003年8月“巴蜀夜雨”过程的模拟和分析研究   总被引:6,自引:0,他引:6  
卢萍  宇如聪  周天军 《气象学报》2008,66(3):371-380
结合中尺度数值预报模式AREM的数值试验和观测资料分析,对2003年8月川西地区的9次夜雨过程进行了模拟研究和综合分析.结果表明,在一定环流背景下,川西地区特殊地形引起的沿坡地的辐合上升运动和下垫面提供给低层大气的热通量所导致的大气层结不稳定,对川西夜雨的形成和发展有重要影响.白天,随着陆-气通量交换的增加,低层大气的温度和湿度逐步升高,并在午后达到极值.与此同时,低层偏南暖湿气流在盆地西部由于气旋性弯曲而形成的东北风在午后逐渐加强,这支气流在盆地西部被地形阻挡,产生爬升运动.辐合上升将低层高温高湿的大气向上输送,使得大气不稳定层结的厚度以及强度都增加;日落以后,低层大气的相对湿度随着气温的降低而增大,容易饱和而形成凝结,同时大气中积累了相当可观的对流有效位能,低层辐合抬升等因素容易触发不稳定能量释放,造成对流性夜雨天气.强烈的对流辐合运动需要周围大气的入流补偿,促使偏东风气流增强且向高空伸展,这令辐合抬升作用进一步增强.  相似文献   

14.
Hu  Yijia  Zhong  Zhong  Zhu  Yimin  Ha  Yao 《Theoretical and Applied Climatology》2018,132(1-2):479-489
Theoretical and Applied Climatology - In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood...  相似文献   

15.
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.  相似文献   

16.
We present two tree-ring chronologies for the southeastern Tibetan Plateau (TP), established by applying the signal-free regional curve standardization and standard dendrochronological methodologies to a set of ring-width series of Tibetan juniper. The relationship between tree growth and climate shows that temperature variability in the previous year is the primary factor controlling tree growth at the upper portion of the forest belt. Accordingly, we developed a mean annual temperature reconstruction covering the period A.D. 984–2009 and explaining 50 % of the instrumental variance. The spatial correlation patterns suggest that our temperature reconstruction is a reasonable proxy for temperature change over the TP. At long time scales, the temperature reconstruction shows similar warm-cold patterns to those in temperature records from other regions of the TP, indicating that decadal and multidecadal temperature variations were generally synchronous across the TP during the past millennium. The periods 1140–1350 and 1600–1800 were common warm and cold episodes over the TP, respectively. Comparison of our reconstruction with four Northern Hemisphere (NH) temperature series indicates that temperature changes on the southeastern TP have generally followed the NH temperature patterns during the past millennium. Our results also suggest that temperature variability over the TP is affected by the Atlantic Multidecadal Oscillation (AMO), with the warm (cool) phases of the AMO associated with above-average (below-average) temperatures over the TP.  相似文献   

17.
The ability of the Parallel Climate Model (PCM) to reproduce the mean and variability of hydrologically relevant climate variables was evaluated by comparing PCM historical climate runs with observations over temporal scales from sub-daily to annual. The domain was the continental U.S, and the model spatial resolution was T42 (about 2.8 degrees latitude by longitude). The climate variables evaluated include precipitation, surface air temperature, net surface solar radiation, soil moisture, and snow water equivalent. The results show that PCM has a winter dry bias in the Pacific Northwest and a summer wet bias in the central plains. The diurnal precipitation variation in summer is much stronger than observed, with an afternoon maximum in summer precipitation over much of the U.S. interior, in contrast with an observed nocturnal maximum in parts of the interior. PCM has a cold bias in annual mean temperature over most of the U.S., with deviations as large as ?8 K. The PCM daily temperature range is lower than observed, especiallyin the central U.S. PCM generally overestimates the net solar radiation over most of the U.S, although the diurnal cycle is simulated well in spring, summer and winter. In autumn PCM has a pronounced noontime peak in solar radiation that differs by 5–10% from observations. PCM'ssimulated soil moisture is less variable than that of a sophisticated land-surface hydrology model, especially in the interior of the country. PCM simulates the wetter conditions over the southeastern U.S. and California during warm (El Niño) events, but shifts the drier conditions in the PacificNorthwest northward and underestimates their magnitude. The temperature response to the North Pacific Oscillation is generally captured by PCM, but the amplitude of this response is overestimated by a factor of about two.  相似文献   

18.
Recently much concern has been expressed regarding the impact of an increased atmospheric CO2 concentration on climate. Unfortunately, present understanding and models of the climate system are not good enough for reliable prediction of such impacts. This paper presents an analysis of recent climate data in order to illustrate the nature of regional temperature and rainfall changes in different seasons and to provide some guidance with regard to points which might be borne in mind when scenarios of future climate (especially those taking into account human impacts) are being formulated.Since it is believed that an increased atmospheric CO2 concentration will cause a warming and models and data suggest that the Arctic is more sensitive to climatic change than other latitudes, anomalies associated with warm Arctic seasons have been studied.The regional temperature, precipitation and pressure anomalies in the northern hemisphere for the 10 warmest Arctic winters and 10 warmest Arctic summers during the last 70 years have been investigated. Even when the Arctic area is warm, there are circulation changes such that large coherent anomalies occur elsewhere, with some regions warming and some cooling. The 10 warmest Arctic winters were characterised by larger amplitude anomalies, in the Arctic and elsewhere, than the 10 warmest summers, illustrating the difference in response between seasons. The precipitation differences for the 10 warmest Arctic winters and summers show for North America large coherent areas of increase or decrease, which again differ according to season. However, in winter the differences are not statistically significant, while the differences in two areas are significant in summer.  相似文献   

19.
Theoretical and Applied Climatology - Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号