首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform N -body simulations of encounters between spherical systems surrounded by a spherical halo. Following a preceding paper with a similar aim, the initial systems include a spherical Jaffe model for the luminous matter and a Hernquist model for the halo. The merger remnants from this sample are mainly slowly rotating, prolate spheroids with a radially anisotropic velocity distribution. The results are compared with real-life ellipticals and with the models without halo in Paper I. We argue that elliptical galaxies with evidence of dark matter could be formed in the field via a merger of spheroids surrounded by a dark matter halo, while ellipticals with no evidence of dark matter might be formed via a merger of two spheroids in a cluster.  相似文献   

2.
We use oblate axisymmetric dynamical models including dark haloes to determine the orbital structure of intermediate mass to massive early-type galaxies in the Coma galaxy cluster. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 per cent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models, we show that flattening by stellar anisotropy maximizes the entropy for a given density distribution. Collisionless disc merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of discs unless the influence of dissipational processes was significant.  相似文献   

3.
Prolate Jaffe models for galaxies   总被引:1,自引:0,他引:1  
We introduce a class of prolate Jaffe models for elliptical galaxies, which are a further extension of Jaffe's spherical models of axisymmetric elliptical systems, and study the properties of their densities, circular velocities, velocity dispersions and two-integral even distribution functions. The form of the potential allows the density to be expressed simply as a function of the potential and radial coordinate R . The models have finite total mass and their densities at large distances decay radially as r −4, except on the major axis, where the densities decay as r −3. It is known from Hunter's formulae that the velocity dispersions for prolate models can be expressed in terms of elementary functions of R and z , unlike those for the oblate Jaffe models recently given by Jiang, and that the prolate models have anisotropic velocity distributions. Thus the prolate models are easier to study than the oblate models. It is also found that the two-integral even distribution functions on the physical boundary of the galaxies increase monotonically with the relative energy, for the prolate models. Furthermore, numerical calculation shows that the two-integral even distribution functions generated from their densities are non-negative, even for very 'squeezed' prolate Jaffe models. However, the edge-on projected surface densities for these prolate models cannot be expressed as simply as for the oblate models.  相似文献   

4.
We use two-dimensional kinematic maps of simulated binary disc mergers to investigate the  λR  -parameter, which is a luminosity-weighted measure of projected angular momentum per unit mass. This parameter was introduced to subdivide the SAURON sample of early-type galaxies in so-called fast  λR > 0.1  and slow rotators  λR < 0.1  . Tests on merger remnants reveal that  λR  is a robust indicator of the true angular momentum content in elliptical galaxies. We find the same range of  λR  values in our merger remnants as in the SAURON galaxies. The merger mass ratio is decisive in transforming fast rotators into slow rotators in a single binary merger, the latter being created mostly in an equal-mass merger. Slow rotators have a  λR  which does not vary with projection. The confusion rate with face-on fast rotators is very small. Mergers with a gas component form slow rotators with smaller ellipticities than collisionless merger remnants have, and are in much better agreement with the SAURON slow rotators. Remergers of merger remnants are slow rotators, but tend to have too high ellipticities. Fast rotators maintain the angular momentum content from the progenitor disc galaxy if merger mass ratio is high. Some SAURON galaxies have values of  λ R   as high as our progenitor disc galaxies.  相似文献   

5.
We analyse N -body galaxy merger experiments involving disc galaxies. Mergers of disc–bulge–halo models are compared to those of bulgeless, disc–halo models to quantify the effects of the central bulge on merger dynamics and the structure of the remnant. Our models explore galaxy mass ratios 1:1 through 3:1, and use higher bulge mass fractions than previous studies. A full comparison of the structural and dynamical properties with our observations is carried out. The presence of central bulges results in longer tidal tails, oblate final intrinsic shapes, surface brightness profiles with a higher Sérsic index, steeper rotation curves and oblate-rotator internal dynamics. Mergers of bulgeless galaxies do not generate long-lasting tidal tails, and their strong triaxiality seems inconsistent with observations; these remnants show shells, which we do not find in models including central bulges. Giant ellipticals with boxy isophotes and anisotropic dynamics cannot be produced by the mergers modelled here; they could be the result of mergers between lower luminosity ellipticals, themselves plausibly formed in disc-disc mergers.  相似文献   

6.
Since many or most galaxies have central massive black holes (BHs), mergers of galaxies can form massive binary black holes (BBHs). In this paper we study the evolution of massive BBHs in realistic galaxy models, using a generalization of techniques used to study tidal disruption rates around massive BHs. The evolution of BBHs depends on BH mass ratio and host galaxy type. BBHs with very low mass ratios (say, ≲0.001) are hardly ever formed by mergers of galaxies, because the dynamical friction time-scale is too long for the smaller BH to sink into the galactic centre within a Hubble time. BBHs with moderate mass ratios are most likely to form and survive in spherical or nearly spherical galaxies and in high-luminosity or high-dispersion galaxies; they are most likely to have merged in low-dispersion galaxies (line-of-sight velocity dispersion ≲90 km s−1) or in highly flattened or triaxial galaxies.
The semimajor axes and orbital periods of surviving BBHs are generally in the range  10-3–10 pc  and  10–105 yr;  they are also larger in high-dispersion galaxies than in low-dispersion galaxies, larger in nearly spherical galaxies than in highly flattened or triaxial galaxies, and larger for BBHs with equal masses than for BBHs with unequal masses. The orbital velocities of surviving BBHs are generally in the range  102–104 km s-1  . The methods of detecting surviving BBHs are also discussed.
If no evidence of BBHs is found in AGNs, this may be either because gas plays a major role in BBH orbital decay or because nuclear activity switches on soon after a galaxy merger, and ends before the smaller BH has had time to spiral to the centre of the galaxy.  相似文献   

7.
The intrinsic, three-dimensional shapes of small galaxy groups, containing between three and eight members, are evaluated using three different statistics: (i) the mean sum of square sines of angles in all possible triangles formed by members of the group; (ii) the variance of square paired separations in the group; (iii) the axial ratio of a rectangle containing the group. The mean values of these parameters and their rms deviations are calculated for observed galaxy groups and simulated groups with members that are distributed randomly within prolate or oblate spheroids. Comparison of observational data and simulations shows that the observed galaxy groups have shapes consistent with the projected shapes of prolate or oblate spheroids with axial ratios of 3:1, regardless of their multiplicity, but inconsistent with the projected shapes of spherical objects.  相似文献   

8.
We use Gauss–Hermite functions to study the line-of-sight velocity distributions in simulated merger remnants. Our sample contains 16 remnants; eight produced by mergers between disc galaxies of equal mass, and eight produced by mergers between disc galaxies with mass ratios of 3:1. The equal-mass mergers display a wide range of kinematic features, including counterrotation at large radii, orthogonally rotating cores and misaligned rotational axes. Most of the unequal-mass remnants exhibit fairly regular disc-like kinematics, although two have kinematics more typical of the equal-mass remnants. Our results may be compared with observations of early-type objects, including ellipticals with misaligned kinematic axes, counterrotating systems and S0 galaxies.  相似文献   

9.
The discovery of protoglobular cluster candidates in many present-day mergers allows us to understand better the possible effects of a merger event on the globular cluster system of a galaxy, and to foresee the properties of the end-product. By comparing these expectations with the properties of globular cluster systems of elliptical galaxies at the present time we can constrain merger models. The observational data indicate that (i) every gaseous merger induces the formation of new star clusters, and (ii) the number of new clusters formed in such a merger increases with the gas content of the progenitor galaxies. Low-luminosity (about M V  > −21), discy ellipticals are generally thought to be the result of a gaseous merger. As such, new globular clusters are expected to form but have not been detected to date. We investigate various reasons for the non-detection of subpopulations in low-luminosity ellipticals, i.e. absence of an old population, absence of a new population, destruction of one of the populations and, finally, an age–metallicity conspiracy that allows old and new globular clusters to appear indistinguishable at the present epoch. All of these possibilities lead us to a similar conclusion, namely that low-luminosity ellipticals did not form recently ( z  < 1) in a gas-rich merger, and might not have formed in a major merger of stellar systems at all. High-luminosity ellipticals do reveal globular cluster subpopulations. However, it is difficult to account for the two populations in terms of mergers alone and, in particular, we can rule out scenarios in which the second subpopulation is the product of a recent, gas-poor merger.  相似文献   

10.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

11.
We present here the first study of the X-ray properties of an evolutionary sample of merging galaxies. Both ROSAT PSPC and HRI data are presented for a sample of eight interacting galaxy systems, each believed to involve a similar encounter between two spiral discs of approximately equal size. The mergers span a large range in age, from completely detached to fully merged systems.
A great deal of interesting X-ray structure is seen, and the X-ray properties of each individual system are discussed in detail. Along the merging sequence, several trends are evident: in the case of several of the infrared bright systems, the diffuse emission is very extended, and appears to arise from material ejected from the galaxies. The onset of this process seems to occur very soon after the galaxies first encounter one another, and these ejections soon evolve into distorted flows. More massive extensions (perhaps involving up to 1010 M⊙ of hot gas) are seen at the 'ultraluminous' peak of the interaction, as the galactic nuclei coalesce.
The amplitude of the evolution of the X-ray emission through a merger is markedly different from that of the infrared and radio emission, however. Although the X-ray luminosity rises and falls along the sequence, the factor by which the X-ray luminosity increases, relative to the optical, appears to be only about a tenth of that seen in the far-infrared. This, we believe, may well be linked with the large extensions of hot gas observed.
The late, relaxed remnants appear relatively devoid of gas, and possess an X-ray halo very different from that of typical ellipticals, a problem for the 'merger hypothesis', whereby the merger of two disc galaxies results in an elliptical galaxy. However, these systems are still relatively young in terms of total merger lifetime, and they may still have a few Gyr of evolution to go through before they resemble typical elliptical galaxies.  相似文献   

12.
Transformation of discs into spheroids via mergers is a well-accepted element of galaxy formation models. However, recent simulations have shown that the bulge formation is suppressed in increasingly gas-rich mergers. We investigate the global implications of these results in a cosmological framework, using independent approaches: empirical halo-occupation models (where galaxies are populated in haloes according to observations) and semi-analytic models. In both, ignoring the effects of gas in mergers leads to the overproduction of spheroids: low- and intermediate-mass galaxies are predicted to be bulge-dominated (   B / T ∼ 0.5  at  <1010 M  , with almost no 'bulgeless' systems), even if they have avoided major mergers. Including the different physical behaviour of gas in mergers immediately leads to a dramatic change: bulge formation is suppressed in low-mass galaxies, observed to be gas-rich (giving   B / T ∼ 0.1  at  <1010 M  , with a number of bulgeless galaxies in good agreement with observations). Simulations and analytic models which neglect the similarity-breaking behaviour of gas have difficulty reproducing the strong observed morphology–mass relation. However, the observed dependence of gas fractions on mass, combined with suppression of bulge formation in gas-rich mergers, naturally leads to the observed trends. Discrepancies between observations and models that ignore the role of gas increase with redshift; in models that treat gas properly, galaxies are predicted to be less bulge-dominated at high redshifts, in agreement with the observations. We discuss implications for the global bulge mass density and future observational tests.  相似文献   

13.
In this letter we investigate the kinematical properties of early-type dwarfs by significantly enlarging the scarce observational sample so far available. We present rotation curves and mean velocity dispersions for four bright dwarf ellipticals and two dwarf lenticular galaxies in the Virgo cluster. Most of these galaxies exhibit conspicuous rotation curves. In particular, five out of the six new galaxies are found to be close to the predictions for oblate spheroids flattened by rotation. Therefore, and contrary to the previous observational hints, the present data suggest that an important fraction of dwarf early-type galaxies may be rotationally supported.  相似文献   

14.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

15.
We discuss the problem of using stellar kinematics of early-type galaxies to constrain the orbital anisotropies and radial mass profiles of galaxies. We demonstrate that compressing the light distribution of a galaxy along the line of sight produces approximately the same signature in the line-of-sight velocity profiles as radial anisotropy. In particular, fitting spherically symmetric dynamical models to apparently round, isotropic face-on flattened galaxies leads to a spurious bias towards radial orbits in the models, especially if the galaxy has a weak face-on stellar disc. Such face-on stellar discs could plausibly be the cause of the radial anisotropy found in spherical models of intermediate luminosity ellipticals such as NGC 2434, 3379 and 6703.
In the light of this result, we use simple dynamical models to constrain the outer mass profiles of a sample of 18 round, early-type galaxies. The galaxies follow a Tully–Fisher relation parallel to that for spiral galaxies, but fainter by at least 0.8 mag ( I -band) for a given mass. The most luminous galaxies show clear evidence for the presence of a massive dark halo, but the case for dark haloes in fainter galaxies is more ambiguous. We discuss the observations that would be required to resolve this ambiguity.  相似文献   

16.
On the basis of Jeans equations we study some dynamical properties of a sample of E galaxies considered as oblate and prolate spheroids. Although the results emphasize the anisotropy as the dominant dynamical factor both for oblate and prolate configurations, the sample contains some oblate galaxies apparently isotropic consistent with full rotational support. Comparisons of the mass-to-luminosity ratios obtained from our models with ratios derived from recent evolutionary synthesis models do not seem to leave room for nonluminous matter within the ranges (of the order of one de Vaucouleurs' radius) of the kinematical observations. Such comparisons suggest that a flatter than the classical Salpeter IMF would lead to better agreement with the dynamical results obtained within the framework of our models.  相似文献   

17.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

18.
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to  7 × 109 M  . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since   z = 1  , 27 per cent of central galaxies (above  3 × 1010 M  ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain 'central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.  相似文献   

19.
The presence of two globular cluster subpopulations in early-type galaxies is now the norm rather than the exception. Here we present two more examples for which the host galaxy appears to have undergone a recent merger. Using multi-colour Keck imaging of NGC 1052 and 7332 we find evidence for a bimodal globular cluster colour distribution in both galaxies, with roughly equal numbers of blue and red globular clusters. The blue ones have similar colours to those in the Milky Way halo and are thus probably very old and metal-poor. If the red globular cluster subpopulations are at least of solar metallicity, then stellar population models indicate young ages. We discuss the origin of globular clusters within the framework of formation models. We conclude that recent merger events in these two galaxies have had little effect on their overall globular cluster systems. We also derive globular cluster density profiles, global specific frequencies and, in the case of NGC 1052, radial colour gradients and azimuthal distribution. In general these globular cluster properties are normal for early-type galaxies.  相似文献   

20.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号