首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ? sphalerite < chalcopyrite ? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe–Al sulfate. The oxi dation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (∼3) and highest concentrations of base metals (to ∼25,000 μg/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach–seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7–7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high surface area of colloidal particles. Conversely, crystalline precipitates composed of ferrihydrite and schwertmannite that formed in the active flow of small streams have lower metal contents, which are attributed to their smaller surface area and, therefore, fewer reactive sorption sites. Seeps containing precipitates with high metal contents may contribute contaminants to the marine environment during storm-induced periods of high runoff. Preliminary chemical data for mussels (Mytilus edulis) collected from Beatson, Ellamar, and Threeman indicate that bioaccumulation of base metals is occurring in the marine environment at all three sites.  相似文献   

2.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

3.
The Myra mine, now inactive, produced Zn and Cu concentrates from a Zn-rich, Kuroko-type, volcanogenic massive sulfide deposit located in the mountainous interior of Vancouver Island. The climate at the site is classified as “Marine West Coast”, with annual precipitation exceeding 2200 mm. Water from a losing stream on the mountainside above the mine follows preferential, fracture-controlled pathways to the upper workings before draining through the 10-Level portal. With a view toward mine decommissioning, portal discharge rate was monitored continuously over a 17-month period during which 46 water samples were collected. Effluent chemistry, dominated by Ca, HCO3 and SO4, shows moderate to high total base metal concentrations and near-neutral pH. Carbonatization, mainly of mafic rocks in the hangingwall, provides significant acid neutralizing potential. Metal concentrations vary seasonally, with smaller spikes associated with summer storm events, and a main peak associated with flushing of the workings during the first heavy autumn rains. Aqueous speciation modeling suggests that Fe and Al concentrations are controlled by the solubilities of hydrous ferric oxides and microcrystalline gibbsite, respectively. Concentrations of Zn, Cu and Cd appear controlled by sorption rather than by the solubilities of mineral phases. A comparison of precipitate concentrations observed in portal effluent with predictions from mass balance (inverse) modeling results suggests that less than 5% of the precipitated Fe and Al hydroxides are transported from the mine. However, amounts of sorbed Cu, Zn and Cd measured in the effluent are only slightly lower than modeled values. This suggests that the small fraction of (probably finer) Fe precipitates in portal effluent sorbs most of the Zn, Cu and Cd predicted by modeling. Based on mass balance calculations, metal loadings are explained by the oxidation of 3830 kg of pyrite, 600 kg of sphalerite and 190 kg of chalcopyrite, annually. Circum-neutral drainage conditions are maintained by the reaction of almost 19,800 kg of calcite, annually.  相似文献   

4.
Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM–EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water–sediment interface of (i) dissolved SO4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.  相似文献   

5.
The comparative behaviour of Ni, Cu and Zn in the system “mine tailings–ground water–plants” has been investigated at the Ni–Cu mine site operated by INCO Ltd. Thompson Operations, Thompson, Manitoba. Oxidation of sulphide minerals causes the release of metals from exposed tailings containing Ni ∼2000 ppm, Cu ∼150 ppm and Zn ∼100 ppm to the ground water, which contains 350 mg/L Ni, 0.007 mg/L Cu, and 1.6 mg/L Zn. The metal concentration in the ground water is affected by the relative proportions of sulfide minerals, the rate of oxidation of sulphide minerals (Ni-bearing pyrrhotite > sphalerite > chalcopyrite), and the affinity of the metals for secondary Fe-phases (Ni > Zn > Cu).  相似文献   

6.
Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ∼1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to <1 mg/L, SO4 increased from 162 to 314 mg/L, dissolved Fe increased from to 0.011 to 0.596 mg/L, and dissolved Zn increased from 0.056 to 0.607 mg/L. Compared to mine drainage in the same study areas, the chemistry of naturally acidic waters tends to overlap but not reach the extreme concentrations of metals and acidity as some mine waters. The chemistry of waters draining these mineralized but unmined areas can be used to estimate premining conditions at sites with similar geologic and hydrologic conditions. For example, the US Geological Survey was asked to estimate premining ground-water chemistry at the Questa Mo mine, and the proximal analog approach was used because a mineralized but unmined area was located adjacent to the mine property. By comparing and contrasting water chemistry from different porphyry mineralized areas, this study not only documents the range in concentrations of constituents of interest but also provides insight into the primary controls of water chemistry.  相似文献   

7.
8.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

9.
The aim of the study was to determine whether the application of phosphate compounds (phosphorite rock, phosphate fertilizer) to polyminerallic waste rocks can inhibit sulfide oxidation and metal mobility (Cu, Pb, Zn, Cd, Ni, Mn, Mg). Waste rocks comprised sulfidic carbonaceous shales and were sourced from the Century Pb-Zn mine, NW Queensland, Australia. The acid producing, Pb-Zn rich rocks consisted of major quartz, muscovite/illite, dolomite, siderite and kaolinite as well as smaller amounts of sulfide minerals (e.g. galena, sphalerite, pyrite). Laboratory leach experiments were conducted on finely granulated phosphate-treated waste rocks (>2 to <30 mm) over 13 weeks, whereas phosphate amendment of coarsely granulated waste rocks (sand to boulder size) was investigated using heap leach piles at the mine site over an 11 months period. Results of the laboratory experiments demonstrate that the treatment of finely granulated waste rocks with phosphorite rock produced leachates with near-neutral pH values due to calcite dissolution. This in turn did not allow the leaching of apatite, formation of secondary phosphate phases and phosphate stabilization to occur. Metal mobility in these amended wastes was restricted by the dissolution of calcite and the resultant near-neutral pH conditions. By contrast, the application of the water-soluble phosphate fertilizer MKP (KH2PO4) to polyminerallic sulfidic waste rocks during the short-term laboratory experiments led to the formation of phosphate coatings and precipitates and inhibited acid and metal release (Cd, Mn, Ni, Pb, Zn). At least in the short term, the application of phosphate fertilizers proved to be an effective method. However, results of the long-term field trials demonstrate that coarsely granulated waste rocks were not coated by secondary phosphate phases and that amendment by phosphorite rock or superphosphate fertilizer did not improve leachate quality compared to the unamended waste. Thus, phosphate stabilization appears ineffective in suppressing oxidation of sulfides in coarsely granulated mine wastes.  相似文献   

10.
Arsenic-bearing stream sediments enter the Upper Isle River, an Au mining-influenced basin (France), by the discharge of mining sites, tailings runoff and weathering of mineralized veins in granites and gneiss. Some fresh ochreous As-rich deposits on the river banks and in floodplains are identified as additional As-rich point sources (As between 0.07 and 6.5 wt.%). The <63 μm fraction of stream sediments contains elevated As bulk concentrations, ranging from 160 to 890 mg/kg, compared to the geochemical background (70 mg/kg on average). It is also enriched in Cd, Hg and W. Spatial variations of these trace elements show 3 significant increases corresponding to the 3 drained mining districts. They decrease down river but are still enriched 30 km downstream of the mining districts due to downstream transportation. Three types of trace element-bearing phases have been identified as: (i) detrital primary sulfides, with high in situ As percentages (up to 43.7 wt.%). They also carry significant amounts of W according to the differences in chemical compositions of the total and light <63 μm fractions. These sulfide particles do not show any sign of alteration in the oxygenated stream sediments; (ii) Secondary Fe–Mn oxyhydroxides,some with very high in situ As2O5 concentrations (up to 59.8 wt.%) and with about 40% of the total Cd composition. They occur as fresh precipitates in the river banks and floodplains and as discrete particles in stream sediments and (iii) Al–Si fine-grained phases. Their major element composition is highly variable with in situ As2O5 concentrations ranging between 430 and 5020 mg/kg. This type of solid phase is also the major carrier of Hg.  相似文献   

11.
This work focuses on the geochemical processes taking place in the acid drainage in the Ribeira da Água Forte, located in the Aljustrel mining area in the Iberian Pyrite Belt. The approach involved water and stream sediment geochemical analyses, as well as other techniques such as sequential extraction, Mössbauer spectroscopy, and X-ray diffraction. Ribeira da Água Forte is a stream that drains the area of the old mine dumps of the Aljustrel mine, which have for decades been a source of acid waters. This stream flows to the north for a little over than 10 km, but mixes with a reduced, organic-rich, high pH waste water from the municipal waste water pools of the village. This water input produces two different results in the chemistry of the stream depending upon the season: (i) in the winter season, effective water mixing takes place, and the flux of acid water from the mine dumps is continuous, resulting in the immediate precipitation of the Fe from the acid waters; (ii) during the summer season, acid drainage is interrupted and only the waste water feeds the stream, resulting in the reductive dissolution of Fe hydroxides and hydroxysulfates in the stream sediments, releasing significant quantities of metals into solution. Throughout the year, water pH stays invariably within 4.0–4.5 for several meters downstream of this mixing zone even when the source waters come from the waste water pools, which have a pH around 8.4. The coupled interplay of dissolution and precipitation of the secondary minerals (hydroxides and sulfates), keeps the system pH between 3.9 and 4.5 all along the stream. In particular, evidence suggests that schwertmannite may be precipitating and later decomposing into Fe hydroxides to sustain the stream water pH at those levels. While Fe content decreases by 50% from solution, the most important trace metals are only slightly attenuated before the solution mixes with the Ribeira do Rôxo stream waters. Concentrations of As are the only ones effectively reduced along the flow path. Partitioning of Cu, Zn and Pb in the contaminated sediments also showed different behavior. Specific/non-specific adsorption is relevant for Cu and Zn in the upstream branch of Ribeira da Água Forte with acid drainage conditions, whereas the mixture with the waste water causes that the association of these metals with oxyhydroxide to be more important. Metals bound to oxyhydroxides are on the order of 60–70% for Pb, 50% for Cu and 30–60% for Zn. Organic matter is only marginally important around the waste water input area showing 2–8% Cu bound to this phase. These results also show that, although the mixing process of both acid and organic-rich waters can suppress and briefly mitigate some adverse effects of acid drainage, the continuing discharge of these waste waters into a dry stream promotes the remobilization of metals fixed in the secondary solid phases in the stream bed back into solution, a situation that can hardly be amended back to its original state.  相似文献   

12.
This study investigates the geochemical characteristics of the acid mine drainage discharged from the abandoned mine adits and tailing piles in the vicinity of the Lousal mine and evaluates the extent of pollution on water and on the stream sediments of the Corona stream. Atmospheric precipitation interacting with sulphide minerals in exposed tailings produces runoff water with pH values as low as 1.9–2.9 and high concentrations of (9,249–20,700 mg l−1), Fe (959–4,830 mg l−1) and Al (136–624 mg l−1). The acidic effluents and mixed stream water carry elevated Cu, Pb, Zn, Cd and As concentrations that exceed the water quality standards. However, the severity of contamination generally decreases 4 km downstream of the source due to mixing with fresh waters, which causes the dilution of dissolved toxic metals and neutralization of acidity. Some natural attenuation of the contaminants also occurs due to the general reduced solubility of most trace metals, which may be removed from solution, by either co-precipitation or adsorption to the iron and aluminium precipitates.  相似文献   

13.
It is well known that oxidation of sulphide-containing coal mine waste has considerable environmental impacts due to generation of acid mine drainage (AMD) containing high dissolved metal concentrations. This study is the first to evaluate seasonal trends in the release of AMD from high arctic coal mine waste rock. Runoff from an abandoned coal mine waste pile in Svalbard (78°N) was studied during the entire 3–4 month period with running water in 2005. Temporal variation in concentrations and fluxes of dissolved elements were quantified based on daily water sampling and used to evaluate weathering processes and estimate element budgets on a daily, seasonal and annual basis. Apart from alkali- and alkaline earth metals; Fe, Al, Mn, Zn and Ni were found to be the most abundant metals in the runoff. Element concentrations were highly correlated and suggest that the processes of sulphide oxidation, ion exchange and silicate weathering occurring within the waste pile were linked throughout the measuring period. Observed pH values varied from 2.8 to 5.2 and SO4 concentrations from 21 to 1463 mg L−1. Manganese and Al concentrations were observed above phytotoxic levels (up to 4 and 23 mg L−1, respectively) and were considered the most critical elements in terms of environmental impact. Throughout the summer a total dissolved quantity of 58 kg Mn, 238 kg Al and 13,700 kg SO4 was released from the pile containing approximately 200,000 m3 of pyritic waste material (<1% FeS2). The highest concentrations of metals, lowest pH values and a very high daily release of H2SO4 (up to twice as high as the following month) were observed during the first week of thaw. This is considered a result of an accumulation of weathering products, generated within the waste pile during winter and released as a pollution-flush during early spring. Similar accumulation/flush sequences were observed later in the summer where rain events following relatively long dry periods caused high daily metal fluxes and on some occasions also elevated dissolved metal concentrations. Despite highly variable weather/climate conditions during the rest of the summer the investigated waste rock pile acted like a relative constant pollution-source during this period. Future investigations regarding the environmental impact of mine waste in the region should include measurements of bioavailable metals in order to provide further details on the seasonal trends in environmental impact.  相似文献   

14.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

15.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   

16.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

17.
Lacustrine sediments, submerged tailings, and their pore waters have been collected at several sites in Yellowknife Bay, Great Slave Lake, Canada, in order to investigate the biogeochemical controls on the remobilization of As from mining-impacted materials under different depositional conditions. Radiometric dating confirms that a mid-core enrichment of Pb, Zn, Cu and Sb corresponds to the opening of a large Au mine 60 a ago. This was evident even in a relatively remote site. Arsenic was enriched at mid-core, coincident with mining activity, but clearly exhibited post-depositional mobility, migrating upwards towards the sediment water interface (SWI) as well as down-core. Deep-water (15 m) Yellowknife Bay sediments that contain buried mine waste are suboxic, relatively organic-rich and abundant in microbes with As in pore waters and sediments reaching 585 μg/L and 1310 mg/kg, respectively. Late summer pore waters show equal proportions of As(III) and As(V) (16–415 μg/L) whereas late winter pore waters are dominated by As(III) (284–947 μg/L). This can be explained by As(III) desorption mechanisms associated with the conversion of FeS to FeS2 and the reduction of As(V) to As(III) through the oxidation of dissolved sulfide, both microbially-mediated processes. Processes affecting As cycling involve the attenuating efficiency of the oxic zone at the SWI, sediment redox heterogeneity and the reductive dissolution of Fe(hydr)oxides by labile organic matter, temporarily and spatially variable.  相似文献   

18.
Despite its potential economic and environmental importance, the study of trace metals in supergene (secondary) Cu-sulfides has been seriously overlooked in the past decades. In this study, the concentration and mineralogical form of “invisible” precious metals (Ag, Au) and metalloids (As, Sb, Se, Te) in supergene digenite (Cu1.8S) from various Cu deposits in the Atacama Desert of northern Chile, the world’s premier Cu province, were determined in detail using a combination of microanalytical techniques. Secondary ion mass spectrometry (SIMS) and electron microprobe analyzer (EMPA) measurements reveal that, apart from hosting up to ∼11,000 ppm Ag, supergene digenite can incorporate up to part-per-million contents of Au (∼6 ppm) and associated metalloids such as As (∼300 ppm), Sb (∼60 ppm), Se (∼96 ppm) and Te (∼18 ppm). SIMS analyses of trace metals show that Ag and Au concentrations strongly correlate with As in supergene digenite, defining wedge-shaped zones in Ag-As and Au-As log-log spaces. SIMS depth profiling and high-resolution transmission electron microscopy (HRTEM) observations reveal that samples with anomalously high Ag/As (>∼30) and Au/As (>∼0.03) ratios plot above the wedge zones and contain nanoparticles of metallic Ag and Au, while samples with lower ratios contain Ag and Au that is structurally bound to the Cu-sulfide matrix. The Ag-Au-As relations reported in this study strongly suggest that the incorporation of precious metals in Cu-sulfides formed under supergene, low-temperature conditions respond to the incorporation of a minor component, in this case As. Therefore, As might play a significant role by increasing the solubility of Ag and Au in supergene digenite and controlling the formation and occurrence of Ag and Au nanoparticles. Considering the fact that processes of supergene enrichment in Cu deposits can be active from tens of millions of years (e.g. Atacama Desert), we conclude that supergene digenite may play a previously unforeseen role in scavenging precious metals from undersaturated (or locally slightly supersaturated) solutions in near-surface environments.  相似文献   

19.
The Drenchwater shale-hosted Zn–Pb–Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ? 4.3, Zn ? 1400 μg/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7–3.1) and very metal-rich waters (up to 2600 μg/L Zn, ? 260 μg/L Cu and ?89 μg/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.  相似文献   

20.
This study is one of very few dealing with mining waste contamination in high altitude, tropical-latitude areas exploited during the last century. Geochemical, mineralogical and hydrological characterizations of potentially harmful elements (PHEs) in surface waters and sediments were performed in the Milluni Valley (main reservoir of water supply of La Paz, Bolivia, 4000 m a.s.l.), throughout different seasons during 2002–2004 to identify contamination sources and sinks, and contamination control parameters. PHE concentrations greatly exceeded the World Health Organization water guidelines for human consumption. The very acidic conditions, which resulted from the oxidation of sulfide minerals in mining waste, favoured the enrichment of dissolved PHEs (Cd > Zn ? As ? Cu ∼ Ni > Pb > Sn) in surface waters downstream from the mine. Stream and lake sediments, mining waste and bedrock showed the highest PHE content in the mining area. With the exception of Fe, the PHEs were derived from specific minerals (Fe, pyrite; Zn, Cd, sphalerite, As, Fe, arsenopyrite, Cu, Fe, chalcopyrite, Pb, galena, Sn, cassiterite), but the mining was responsible for PHEs availability. Most of the PHEs were extremely mobile (As > Fe > Pb > Cd > Zn ∼ Cu > Sn) in the mining wastes and the sediments downstream from the mine. pH and oxyhydroxides mainly explained the contrasted availability of Zn (mostly in labile fractions) and As (associated with Fe-oxyhydroxides). Unexpectedly, Pb, Zn, As, and Fe were significantly attenuated by organic matter in acidic lake sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号