首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few data are available on mercury (Hg) dynamics at high-elevation mountain sites. In this project, a whole-watershed approach was used to quantify major fluxes and pools of Hg in Sagehen basin, a closed basin in the Sierra Nevada mountains in California. Over a period spanning 9 months (January-September 2009), we estimated wet deposition inputs to the watershed at 3.8 μg m−2. Dry deposition added additional Hg in the range of 0.30-2.45 μg m−2 during this time period, and was the dominant deposition process during summer time. Seasonal snowpack accounted for only half of the Hg deposited by wet deposition. We suggest that photo-induced reduction of Hg(II) in snow and subsequent volatilization was responsible for this loss. Thus, snowpacks in the Sierra Nevada mountains likely reduce the effective atmospheric mercury flux via wet deposition due to significant emission fluxes prior to snowmelt. As such, wet Hg deposition could be of lesser importance as a Hg source in snow-dominated systems. Finally, stream runoff collected at the outlet of the watershed could account for only 4% of total Hg wet deposition suggesting that a large fraction of mercury deposition was sequestered in the ecosystem, specifically in the soils.  相似文献   

2.
Atmospheric mercury deposition on snow at springtime has been reported in polar regions, potentially posing a threat to coastal and inland ecosystems receiving meltwaters. However, the post-depositional fate of Hg in snow is not well known, and no data are available on Hg partitioning in polar snow. During snowmelt, we conducted a survey of Hg concentrations, partitioning and speciation in surface snow and at depth, over sea ice and over land along a 100 km transect across Cornwallis Island, NU, Canada. Total Hg concentrations [THg] in surface snow were low (less than 20 pmol L−1) and were significantly higher in marine vs. inland environments. Particulate Hg in surface snow represented up to 90% of total Hg over sea ice and up to 59% over land. At depth, [THg] at the snow/sea ice interface (up to 300 pmol L−1) were two orders of magnitude higher than at the snow/lake ice interface (ca. 2.5 pmol L−1). Integrated snow columns, sampled over sea-ice and over land, showed that particulate Hg was mostly bound to particles ranging from 0.45 to 2.7 μm. Moreover, melting snowpacks over sea ice and over lake ice contribute to increase [THg] at the water/ice interfaces. This study indicates that, at the onset of snowmelt, most of the Hg in snow is in particulate form, particularly over sea ice. Low Hg levels in surface snow suggest that Hg deposited through early spring deposition events is partly lost to the atmosphere from the snowpack before snowmelt. The sea ice/snow interface may constitute a site for Hg accumulation, however. Further understanding of the cycling of mercury at the sea ice/snow and sea ice/seawater interfaces is thus warranted to fully understand how mercury enters the arctic food webs.  相似文献   

3.
Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over 2-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran Hg analyzers. GEM, RGM, and particulate Hg (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize Hg air concentrations in the southern Idaho area for the first time, estimate Hg dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m−3) and RGM (8.1 ± 5.6 pg m−3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m−3, 3.2 ± 2.9 pg m−3 for GEM, RGM, respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m−3). Seasonally averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s−1 for GEM (spring, summer, fall and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s−1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 μg m−2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2–12 ng m−3) and RGM (50–150 pg m−3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicate predominant source directions to the SE (western Utah, northeastern Nevada) and SW (north-central Nevada) with fewer inputs from the NW (southeastern Oregon and southwestern Idaho).  相似文献   

4.
Mercury fluxes from air/surface interfaces in paddy field and dry land   总被引:3,自引:0,他引:3  
In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex® multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 ± 22.8 ng m−2 h−1 in the warm season, 15.5 ± 18.8 ng m−2 h−1 in the cold season for dry land, and 23.8 ± 15.6 ng m−2 h−1 in the warm season, 6.3 ± 11.9 ng m−2 h−1 in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower than that for bare land.  相似文献   

5.
Recent Lake Tanganyika Hg deposition records were derived using 14C and excess 210Pb geochronometers in sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake’s shoreline north of Kigoma. At the Kalya Platform area, pre-industrial Hg concentrations are 23 ± 0.2 ng/g, increasing to 74 ng/g in modern surface sediment, and the Hg accumulation rate has increased from 1.0 to 7.2 μg/m2/a from pre-industrial to present, which overall represents a 6-fold increase in Hg concentration and accumulation. At the Nyasanga/Kahama delta region, pre-industrial Hg concentrations are 20 ± 3 ng/g, increasing to 46 ng/g in surface sediment. Mercury accumulation rate has increased from 30 to 70 μg/m2/a at this site, representing a 2–3-fold increase in Hg concentration and accumulation. There is a lack of correlation between charcoal abundance and Hg accumulation rate in the sediment cores, demonstrating that local biomass burning has little relationship with the observed Hg concentration or Hg accumulation rates. Examined using a sediment focusing-corrected mass accumulation rate approach, the cores have similar anthropogenic atmospheric Hg deposition profiles, suggesting that after accounting for background sediment concentrations the source of accumulating Hg is predominantly atmospheric in origin. In summary, the data document an increase of Hg flux to the Lake Tanganyika ecosystem that is consistent with increasing watershed sediment delivery with background-level Hg contamination, and regional as well as global increases in atmospheric Hg deposition.  相似文献   

6.
The concentrations of mercury (Hg) and other trace metals (Ni, Cu, Zn, Mo, Ba, Re, U) and the Hg isotopic composition were examined across a dramatic redox and productivity transition in a mid-Pleistocene Mediterranean Sea sapropel sequence. Characteristic trace metal enrichment in organic-rich layers was observed, with organic-rich sapropel layers ranging in Hg concentration from 314 to 488 ng/g (avg = 385), with an average enrichment in Hg by a factor of 5.9 compared to organic-poor background sediments, which range from 39 to 94 ng/g Hg (avg = 66). Comparison of seawater concentrations and sapropel accumulations of trace metals suggests that organic matter quantitatively delivers Hg to the seafloor. Near complete scavenging of Hg from the water column renders the sapropel Hg isotopic composition representative of mid-Pleistocene Mediterranean seawater. Sapropels have an average δ202Hg value of −0.91‰ ± 0.15‰ (n = 5, 1 SD) and Δ199Hg value of 0.11‰ ± 0.03‰ (n = 5, 1 SD). Background sediments have an average δ202Hg of −0.76‰ ± 0.16‰ (n = 5, 1 SD) and Δ199Hg of 0.05‰ ± 0.01‰ (n = 5, 1 SD), which is indistinguishable from the sapropel values. We suggest that the sapropel isotopic composition is most representative of the mid-Pleistocene Tyrrhenian Sea.  相似文献   

7.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   

8.
Sediments in Lake Qinghai archive important information about past environmental changes. In order to faithfully interpret the sediment records and constrain the elemental cycles, it is critical to trace various sources of sediments in the lake. The results show that the elemental input–output budgets are imbalanced for most major elements between riverine fluxes and mass accumulation rate (MAR) of Lake Qinghai sediments. A realistic model must include contributions of dry/wet atmospheric deposition that allow the major element mass balance for the lake to be defined. The budget estimation is based on mass balances of Si and Al, which are relatively immobile and carried to the lake via particulate forms. Estimated annual budget of dry atmospheric deposition is ∼1.3 ± 0.3 × 103 kt/a (accounting for ∼65% of the total inputs) to the lake sediments, assuming local loess within the catchment as a candidate for dry atmospheric deposition to the lake. The resultant flux of 300 ± 45 g/m2/a falls within the flux average of the desert area (400 g/m2/a) and the loess plateau (250 g/m2/a), consistent with the geographical setting of Lake Qinghai. The role of atmospheric deposition would be more significant if wet deposition via rainfall and snow were taken into account. This highlights the potential importance of dust as a significant source for sediment preservation flux for other catchments worldwide. The results also indicate that nearly all Ca input was preserved in the lake sediments under modern conditions, consistent with Ca2+ supersaturation of the lake water.  相似文献   

9.
Mercury isotope fractionation during liquid-vapor evaporation experiments   总被引:2,自引:0,他引:2  
Liquid-vapor mercury isotope fractionation was investigated under equilibrium and dynamic conditions. Equilibrium evaporation experiments were performed in a closed glass system under atmospheric pressure between 0 and 22 °C, where vapor above the liquid was sampled at chemical equilibrium. Dynamic evaporation experiments were conducted in a closed glass system under 10−5 bar vacuum conditions varying (1) the fraction of liquid Hg evaporated at 22 °C and (2) the temperature of evaporation (22-100 °C). Both, residual liquid and condensed vapor fractions were analyzed using stannous chloride CV-MC-ICP-MS.Equilibrium evaporation showed a constant liquid-vapor fractionation factor (α202/198) of 1.00086 ± 0.00022 (2SD, n = 6) within the 0-22 °C range. The 22 °C dynamic evaporations experiments displayed Rayleigh distillation fractionation behavior with liquid-vapor α202/198 = 1.0067 ± 0.0011 (2SD), calculated from both residual and condensed vapor fractions. Our results confirm historical data (1920s) from Brönsted, Mulliken and coworkers on mercury isotopes separation using evaporation experiments, for which recalculated δ202Hg′ showed a liquid-vapor α202/198 of 1.0076 ± 0.0017 (2SD). This liquid-vapor α202/198 is significantly different from the expected kinetic α202/198 value ((202/198)0.5 = 1.0101). A conceptual evaporation model of back condensation fluxes within a thin layer at the liquid-vapor interface was used to explain this discrepancy. The δ202Hg′ of condensed vapor fractions in the 22-100 °C temperature range experiments showed a negative linear relationship with 106/T2, explained by increasing rates of exchange within the layer with the increase in temperature.Evaporation experiments also resulted in non-mass-dependent fractionation (NMF) of odd 199Hg and 201Hg isotopes, expressed as Δ199Hg′ and Δ201Hg′, the deviation in ‰ from the mass fractionation relationship with even isotopes. Liquid-vapor equilibrium yielded Δ199Hg′/Δ201Hg′ relationship of 2.0 ± 0.6 (2SE), which is statistically not different from the one predicted for the nuclear field shift effect (Δ199Hg/Δ201Hg ≈ 2.47). On the other hand, evaporation under dynamic conditions at 22 °C led to negative anomalies in the residual liquid fractions that are balanced by positive anomalies in condensed vapors with lower Δ199Hg′/Δ201Hg′ ratios of 1.2 ± 0.4 (2SD). This suggests that either magnetic isotope effects may have occurred without radical chemistry or an unknown NMF process on odd isotopes operated during liquid mercury evaporation.  相似文献   

10.
Mercury air/surface exchange was measured over litter-covered soils with low Hg concentrations within various types of forests along the eastern seaboard of the USA. The fieldwork was conducted at six forested sites in state parks in South Carolina, North Carolina, New Jersey, Pennsylvania, New York and Maine from mid-May to early June 2005. The study showed that the Hg air/surface exchange was consistently very low and similar (overall daytime mean flux = 0.2 ± 0.9 ng m−2 h−1, n = 310, for all six sites monitored) with the various forest types. These flux values are comparable with those found in a year-long study in Tennessee (yearly daytime mean = 0.4 ± 0.5 ng m−2 h−1), but lower than many previous flux results reported for background soils. The Hg fluxes at all sites oscillated around zero, with many episodes of deposition (negative fluxes) occurring in both daytime and nighttime. While there were particular days showing significant correlations among the Hg air/surface exchange and certain environmental parameters, perhaps because of the low fluxes encountered, few significant correlations were found for any particular day of sampling between the Hg flux and environmental parameters such as solar radiation, soil temperature, air temperature (little variability seen), relative humidity, and ambient air Hg concentrations. Factors driving the Hg exchange as previously found for enriched soils may not hold for these background litter-covered forest soils. The results suggest that spatial variations of the Hg air/surface exchange were small among these different forest types for this particular time of year.  相似文献   

11.
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.  相似文献   

12.
Total particulate mercury (TPM) and reactive gaseous mercury (RGM) concentrations in ambient air on the eastern slope of the Mt. Gongga area, Sichuan Province, Southwestern China were monitored from 25 May, 2005 to 29 April, 2006. Simultaneously, Hg concentrations in rain samples were measured from January to December, 2006. The average TPM and RGM concentrations in the study site were 30.7 and 6.2 pg m−3, which are comparable to values observed in remote areas in Northern America and Europe, but much lower than those reported in some urban areas in China. The mean seasonal RGM concentration was slightly higher in spring (8.0 pg m−3) while the minimum mean concentration was observed in winter (4.0 pg m−3). TPM concentrations ranged across two orders of magnitude from 5.2 to 135.7 pg m−3 and had a clear seasonal variation: winter (74.1 pg m−3), autumn (22.5 pg m−3), spring (15.3 pg m−3) and summer (10.8 pg m−3), listed in decreasing order. The annual wet deposition was 9.1 μg m−2 and wet deposition in the rainy season (May–October) represented over 80% of the annual total. The temporal distribution of TPM and RGM suggested distinguishable dispersion characteristics of these Hg species on a regional scale. Elevated TPM concentration in winter was probably due to regional and local enhanced coal burning and low wet deposition velocity. The RGM distribution pattern is closely related to daily variation in UV radiation observed during the winter sampling period indicating that photo-oxidation processes and diurnal changes in meteorology play an important role in RGM generation.  相似文献   

13.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   

14.
Mercury dynamics in snowpacks under forested canopy are currently unknown, even though these snowpacks may represent important Hg pools eventually released towards lakes at snowmelt. We followed Hg distribution and partitioning in snowpacks under different temperate canopy types over space and time, and conducted short-term experiments on Hg redox behaviour in these snowpacks. Hg concentrations were ca. two times higher in snow deposited under coniferous than deciduous canopies; the lowest concentrations were observed in snow over a frozen lake in the same watershed. In snow on the ground, up to 80% of the Hg was bound to particles between 10 and 70 μm. Incubations of snow in situ showed that (i) Hg photoreduction and evasion was significant in open areas (lake surface) but was greatly hampered by light attenuation under winter canopies and (ii) oxidation of newly produced Hg0 was a significant process in boreal snow, affecting Hg evasion to the atmosphere. We used a mass balance approach to compare Hg pools in snowpacks with wet deposition measured by precipitation collectors. A net gain of Hg was observed in snow under mixed canopies whereas, under a deciduous canopy, the pool of Hg stored at the end of the winter was comparable to that of wet deposition. Snow over lake acted as a winter source of Hg. Whereas most Hg deposited by snow on lakes is lost before snowmelt, Hg deposited on the forested watershed is largely retained in snowpacks, presenting a threat to systems receiving meltwaters.  相似文献   

15.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

16.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

17.
We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the “snow-sea ice-seawater” continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (HgT) concentrations varied from 0.63 to 2.76 pmol L−1 with “transient-type” vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean HgT concentrations (1.35 ± 0.39 pmol L−1) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol L−1). Labile Hg (HgR) concentrations varied from 0.01 to 2.28 pmol L−1, with a distribution showing that the HgT enrichment south of the SPF consisted mainly of HgR (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHgT) concentrations ranged from 0.02 to 0.86 pmol L−1. All vertical MeHgT profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for HgT, low mean MeHgT concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHgT concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHgTvs Apparent Oxygen Utilization (AOU) relationship (p < 0.001). The proportion of HgT as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station HgT and HgR concentrations found in the “snow-sea ice-seawater” continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of HgT there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHgT concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol L−1. The MeHgT vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas HgT concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.  相似文献   

18.
Activity concentrations of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were determined at 7 shallow-water stations (maximum depths: 30 (S.1 and S.2), 65 (S.3), 97 (S.5), 105 (S.6) and 220 m (S.4 and S.7) in Saronikos Gulf and Elefsis Bay (central Aegean Sea, Greece) during 3 seasonal cruises (summer 2008, autumn 2008 and winter 2009) to assess the time scales of the dynamics and the depositional fate of particulate matter (POC, particulate 234Th). For that reason, in situ filtrating systems were deployed in several depths of the water column consisting of GF/A disc prefilters to scavenge particulate fraction of 234Th and organic carbon and impregnated cartridges to adsorb dissolved 234Th.The obtained data showed average particulate 234Th activity concentrations of 3.7 ± 0.4 Bq m−3 in summer, 2.1 ± 0.2 Bq m−3 in autumn and 2.4 ± 0.2 Bq m−3 in winter. The respective average dissolved 234Th activity concentrations were 30.1 ± 2.8 Bq m−3 in summer, 30.2 ± 2.9 Bq m−3 in autumn and 27.4 ± 3.0 Bq m−3 in winter. The activity ratios of total 234Th and its long-lived conservative parent 238U were below unity in most of the stations indicating radioactive disequilibrium throughout the water column, thus very dynamic trace-metal scavenging and particle export from the water column. These profiles (234Th and 238U) were used to estimate the export fluxes and scavenging rates of 234Th, as well as their residence times in the water column. The average cumulative export fluxes of particulate 234Th were estimated to be 33 ± 4 Bq m−2 d−1 in summer, 35 ± 5 Bq m−2 d−1 in autumn and 45 ± 6 Bq m−2 d−1 in winter, whereas the respective average cumulative scavenging rates of dissolved 234Th were 39 ± 5, 33 ± 5 and 50 ± 7 Bq m−2 d−1. Moreover, the cumulative average residence times of 234Th were 25 ± 4 d in summer, 45 ± 6 d in autumn and 64 ± 7 d in winter 2009 for the dissolved fraction and 4 ± 1, 3 ± 1 and 4 ± 1 d for the particulate one, respectively.POC/ ratio profiles decreased versus depth showing a variety of marine processes, such as loss of POC due to dissolution after biological activity, impact of minerals in particle sinking and microbial remineralization. Average cumulative export fluxes of POC were 162 ± 18 mmol m−2 d−1 in summer, 107 ± 19 mmol m−2 d−1 in autumn and 157 ± 25 mmol m−2 d−1 in winter 2009. The seasonal data of POC fluxes certified the existence of phytoplankton bloom in winter for Saronikos Gulf. In addition, after evaluating the maxima of POC fluxes in Elefsis Bay (a small embayment in northern Saronikos Gulf) during summer, potential bloom of phytoplankton also concluded; this approach is in agreement with previous data of the same area. Finally, the elevated POC concentrations and fluxes in the region certify that the Gulf is still one of the most organic polluted in the Mediterranean Sea.  相似文献   

19.
This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 ± 0.5 ng m−2 h−1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.  相似文献   

20.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号