首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Farasan Islands are located about 40 km offshore of Jizan area, southern Red Sea, Saudi Arabia. This is a preliminary study aiming to collect shoreline sediments from 17 stations to describe their main lithologic characters and identify the dominant molluscs that could help to evaluate the environmental conditions of these islands. Also, a sediment core FARA2 was collected from the intertidal area of Khor As Sailah Lagoon to see the development of shoreline sediments in this area with time. The results indicated that the shoreline sediments of the Farasan Islands comprised mainly of white, biogenic sand enriched in remains of corals, molluscs, calcareous algae, and benthic foraminifera. Thirty-four mollusc species were recorded from these sediments. Among them, Strombus fasciatus, Strombus tricornis, Chicoreus ramosus, Chicoreus virgineus, Tridacna maxima, and Tridacna squamosa were the most common molluscan in/near the shoreline sediments of Farasan Islands. Frequency abundances of sediment grain-size fractions in the core FARA2 indicated that the shoreline of the Khor As Sailah Lagoon is developing towards shallow intertidal setting due to high production of biogenic sediments by reefal communities. Metal concentrations (Fe, Mn, Cu, and Zn) in the sediment of the core FARA2 were stable throughout, showing no remarkable changes. This finding could indicate that flux of detrital components by fresh water runoff or wind-blown dust over the Farasan Islands was un-detectable during the deposition of these sediments.  相似文献   

2.
Biological and physical reworking of sediments can profoundly affect the structure and functioning of benthic communities. The depth of the disturbance is an important factor that controls the types of organisms that can exist within the sediments. Large numbers of horseshoe crabs,Limulus polyphemus, spawn each spring on the sandy shores of Delaware Bay beaches. We have used this abundance peak to provide an estimate of the depth of sediment disruption caused by this species on an intertidal flat adjoining a major spawning beach. Vertical columns of marked sediment were placed in three locations of an intertidal flat. Some columns were protected with cages while others remained unprotected. Analysis of variance of the depth of disruption of the marked sediment indicated that different areas of the intertidal zone were disrupted to different depths. Caged marked sediment was disturbed to an average depth of 3.2 cm while unprotected sediment was disturbed to a mean depth of 11.1 cm. Deepest mixing occurred in a trough between sandwave crests and averaged 17.7 cm deep. These mixing depths are greater than the 1.2 cm deep disturbance produced by nonstorm wave action in the study area.  相似文献   

3.
Effects of petroleum covered substrate on intertidal oyster spat (Crassostrea virginica) set were measured at three intertidal elevations in a southeastern North Carolina estuary.Mercenaria mercenaria shells were coated with Bunker C crude oil or a 40∶1 mixture of gasoline: 2-cycle engine oil and placed intertidally for seven 13-d periods. Spat densities were significantly lower on oil treatments versus control and gas-treated shells in the high intertidal zone. This was principally attributed to an increased sediment coat on oiled shells. Maximum spat size was smaller on oil-treated shells at all elevations when compared to gas and control shells, indicating that setting may be delayed on oiled shell. For all experimental 13-d periods in the low intertidal zone and for three periods in the mid-tidal zone, barnacle densities (primarilyBalanus improvisus andB. eburneus) were significantly greater on oiled shells than on control shells.  相似文献   

4.
Crabs (Grapsidae,Sesarma) are the dominant macrofaunal group of mangrove forest soils in northern Australia. Little is known about the ecology of these crabs or the factors that influence their distribution in mangrove forests. Pitfall traps were used to sample grapsid crabs in the Murray River estuary in north Queensland. Sampling was conducted at five sites along a salinity gradient from <1‰ at upstream sites to >35‰ at the river mouth. At each site, trapping was done in both low and high intertidal forests. We characterized the sediments at each site by measuring percent sand, silt, clay and organic matter, Eh, pH, and soil pore-water salinity. Four species of grapsids dominated the crab fauna along the Murray River (Sesarma semperi-longicristatum, S. messa, S. brevicristatum, andS. brevipes). Distinct zonation patterns were found along the salinity gradient and between high and low intertidal forests.S. messa was dominant in high intertidal, downstream forests, high and low intertidal forests in the middle to downstream portion of the river, and in low intertidal forests in the central reach of the river.S. brevipes was dominant in both low and high intertidal zone forests at low salinity upstream sites.S. brevicristatum was most abundant in the central reaches of the river and only in the high intertidal zone.S. semperi-longicristatum was found only in the low intertidal zone, downstream forest. Subsequently, tests of salinity tolerances of these crabs were carried out in the laboratory. These indicated very wide tolerances over salinities from completely fresh to hypersaline (60‰). The osmoregulatory abilities of the crabs were also found to vary. However, neither their salinity tolerance nor osmoregulatory ability adequately explain the zonation patterns were measured in the field. For example,S. brevicristatum had the most restricted distribution, but it had the second broadest salinity tolerance and osmoregulatory ability. Sediment characteristics explained a significant amount of the variation in abundance for two of the crab species. Pore-water salinity provided no explanatory power for any of the species. Individual species abundances are probably influenced by additional factors such as interspecific competition and predation.  相似文献   

5.
The temporal variability in abundance and population structure of the gastropodChilina ovalis Sowerby was studied in the upper intertidal zone of Queule River estuary, south-central Chile (c. 40°S). Snails were collected monthly (September 1995–December 1997) from haphazardly-located quadrats (50×50 cm, n=5 each time), and counted and measured (shell height) in the laboratory. Water and sediment samples were collected at the same time to study the snail's habitat characteristics. Overall mean abundance was 115 individuals m?2 (SD=55). Monthly abundance estimates indicated a clear decrease during 1997. This decrease appeared to be related to the annual recruitment success of the species and at least partially to water temperature and sedimentological variability. Overall size range ofC. ovalis was 1.5–27.5 mm shell height. Growth varied seasonally with highest growth rates observed after recruitment (November–February). Slower growth continued throughout the austral winter months. Despite changes in abundance between 1996 and 1997, no differences were detected when population growth estimates were compared between years. A maximum longevity of approximately 4 yr was estimated from the growth curves of the cohorts, and a life cycle with more than one reproductive period is suggested.  相似文献   

6.
Accurate measures of intertidal benthic microalgal standing stock (biomass) and productivity are needed to quantify their potential contribution to food webs. Oxygen microelectrode techniques, used in this study, provide realistic measures of intertidal benthic microalgal production. By dividing a salt-marsh estuary into habitat types, based on sediment and sunlight characteristics, we have developed a simple way of describing benthic microalgal communities. The purpose of this study was to measure and compare benthic microalgal biomass and production in five different estuarine habitats over an 18-mo period to document the relative contributions of benthic microalgal productivity in the different habitat types. Samples were collected bimonthly from April 1990 to October 1991. Over the 18-mo period, tall Spartina zone habitats had the highest (101.5 mg chlorophyll a (Chl a) m?2±6.9 SE) and shallow subtidal habitats the lowest (60.4±8.9 SE) microalgal biomass. There was a unimodal peak in biomass during the late winter-early spring period. The concentrations of photopigments (Chl a and total pheopigments) in the 0–5 mm of sediments were highly correlated (r2=0.73 and 0.88, respectively) with photopigment concentrations in the 5–10 mm depth interval. Biomass specific production (μmol O2 mg Chl a ?1 h?1) was highest in intertidal mudflat habitats (206.3±11.2 SE) and lowest in shallow subtidal habitats (104.3±11.1 SE). Regressions of maximum production (production at saturating irradiances) vs. biomass (Chl a) in the upper 2 mm of sediment by habitat type gave some of the highest correlations ever reported for benthic microalgal communities (r2 values ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic ranged from 0.43 to 0.73). The habitat approach and oxygen microelectrode techniques provide a useful, realistic method for understanding the biomass and production dynamics of estuarine benthic microalgal communities.  相似文献   

7.
8.
Rhythmic movements in response to tidal cycles are characteristic of infaunal inhabitant of intertidal soft-bottoms, allowing them to remain in the area with best living conditions. The effect of bioturbators as modifier of local environmental conditions and thus of gradients in intertidal habitats, has not been investigated yet. The Atlantic estuarine intertidal areas are dominated by the burrowing crabChasmagnathus granulatus that generates strong environmental heterogeneity by affecting the physical-chemical characteristics of the sediment. The comparison between intertidal areas with and without crab shows that sediments in the crab beds remain more humid, softer, and homogeneous across the intertidal and along the tidal cycle than areas without crabs. The densities of infauna were higher at high intertidal zones in crab beds than in similar areas without crabs. Infaunal organisms performed vertical movements into the sediment following the tidal cycle that were always of higher magnitude in habitats without crabs. Infaunal species tend to spend most of the time buried into the sediment in the crab bed. Migratory shorebirds use the Atlantic estuarine environments as stopover or wintering sites. They feed (mainly on polychaetes) in the low intertidal zones of both habitats (with and without crabs), but they also feed in the upper intertidal of the crab bed; polychaete per capita mortality rate is higher in the upper part of the crab bed. Environmental heterogeneity produced by crab disturbance has an effect on the infaunal behavior, risk of mortality, and the zonation pattern. This is another example of the ecosystem engineering ability of a burrowing intertidal species.  相似文献   

9.
Analysis of Holocene sediment accumulation in the Guadiana estuary (southern Portugal) during sea‐level rise since ca. 13 cal. ka BP was used to simulate the long‐term morphological evolution of the lower Guadiana estuary and the associated intertidal zone for 21st‐century predicted sea‐level rises. Three sea‐level rise scenarios given by the IPCC ( 2007 ) were used in the simulations of morphology using a large‐scale behaviour‐oriented modelling approach. Sedimentation rate scenarios were derived both from the Holocene evolution of the estuary and from a semi‐empirical estimation of present‐day sediment aggradation. Our results show that the net lateral expansion of the intertidal zone area would be about 3–5% of the present intertidal zone area for each 10 cm rise in sea level. Under constraints imposed by the lack of fluvial sediment supply, the lateral expansion of the landward boundary of the intertidal zone will occur mainly in the Portuguese margin of the Guadiana estuary, while submergence of the salt marshes will occur in the Spanish margin. Therefore the Spanish margin is highly vulnerable to both sea‐level rise and lack of sediment supply. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A field experiment was carried out to investigate the patterns of macrobenthic recolonization and to determine the effects of biodeposition on benthic communities at an intertidal oyster culture site in New Brunswick, Canada. Total organic deposition in azoic organic-free sediment trays was generally higher within the farm compared to reference sites. Two weeks after deployment of trays, total organic content had reached 1.1%. The abundance, species number, and diversity of the macrobenthic community were positively correlated with the total organic content in the experimental trays, but the correlations between community parameters and organic content were negative in the ambient sediment. The results suggest that organic matter in sediment may have positive effects on macrobenthic infauna at low levels as an additional food source but may be harmful to benthic animals at high levels. This study also indicates that location in the intertidal zone is a major parameter affecting the community structure of macrobenthic colonization.  相似文献   

11.
The extensive spread ofPhragmites australis throughout brackish marshes on the East Coast of the United States is a major factor governing management and restoration decisions because it is assumed that biogeochemical functions are altered by the invasion. Microbial activity is important in providing wetland biogeochemical functions such as carbon and nitrogen cycling, but there is little known about sediment microbial communities inPhragmites marshes. Microbial populations associated with invasivePhragmites vegetation and with native salt marsh cordgrass,Spartina alterniflora, may differ in the relative abundance of microbial taxa (community structure) and in the ability of this biota to decompose organic substrates (community biogeochemical function). This study compares sediment microbial communities associated withPhragmites andSpartina vegetation in an undisturbed brackish marsh near Tuckerton, New Jersey (MUL), and in a brackish marsh in the anthropogenically affected Hackensack meadowlands (SMC). We use phospholipid fatty acid (PLFA) analysis and enzymataic activity to profile sediment microbial communities associated with both plants in each site. Sediment analyses include bulk density, total organic matter, and root biomass. PLFA profiles indicate that the microbial communities differ between sites with the undisturbed site exhibiting greater fatty acid richness (62 PLFA recovered from MUL versus 38 from SMC). Activity of the 5 enzymes analyzed (β-glucosidase, acid phosphatase, chitobiase, and 2 oxidases) was higher in the undisturbed site. Differences between vegetation species as measured by Principal Components Analysis were significantly greater at the undisturbed MUL site than at SMC, and patterns of enzyme activity and PLFAs did not correspond to patterns of root biomass. We suggest that in natural wetland sediments, macrophyte rhizosphere effects influence the community composition of sediment microbial populations. Physical and chemical site disturbances may impose limits on these rhizosphere effects, decreasing sediment microbial diversity and potentially, microbial biogeochemical functions.  相似文献   

12.
Structural diversity and fate of intact polar lipids in marine sediments   总被引:1,自引:0,他引:1  
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.  相似文献   

13.
This paper addresses macroscopic signatures of microbial mat-related structures within the 1.6Ga-old Chorhat Sandstone of the Semri Group — the basal stratigraphic unit of the Vindhyan succession in Son valley. The Chorhat Sandstone broadly represents a prograding succession of three depositional facies ranging from shallow shelf to coastal margin with aeolian sandsheet. The mat-mediated structures were generated because of plastic or brittle deformation of sand, turned cohesive and even thixotropic because of microbial mat growth. Mat growth also favoured abundant preservation of structures that usually have low preservation potential. Prolific growth of microbial mat in the subtidal to intertidal zone of the Chorhat sea was facilitated due to lack of grazing and burrowing activities of organisms in the Precambrian. It further indicates low rate of sedimentation between the storms, as also attested by frequent superposition of storm-beds, even near the storm wave base. It also reduces erosion and that, in turn, would imply low sediment concentration in flows leading to development of bedforms that are likely to be smaller in size and isolated from each other in a single train in contrast to those that form in mat-free sands.  相似文献   

14.
天津市潮间带表层沉积物的类型及其分布   总被引:4,自引:2,他引:2  
根据在天津市潮间带地区采集的108个底质样品的粒度分析结果,划分了潮间带表层沉积物的类型,并探讨了潮间带的粒度分布特征和沉积作用。结果表明,天津潮间带可分为3个岩性区,分别以海河口、独流减河口为界,海河口以北至涧河口为片状粘土质粉砂分布区,海河口以南至独流减河口为多岩性、条带状的砂-粉砂分布区,独流减河口至歧口为片状粘土质粉砂分布区。海河口以北的潮间带是以低能潮汐作用为主的泥质粉砂潮滩沉积环境,海河口以南的潮间带是以河口沉积为主体,后经潮汐改造的潮滩环境,驴驹河-独流减河河口岸段潮间带早期水动力较强,后受到潮滩环境的改造,歧口岸段潮间带以潮滩沉积环境为主。  相似文献   

15.
The fringing environments of lower Chesapeake Bay include sandy shoals, seagrass meadows, intertidal mud flats, and marshes. A characterization of a fringing ecosystem was conducted to provide initialization and calibration data for the development of a simulation model. The model simulates primary production and material exchange in the littoral zone of lower Chesapeake Bay. Carbon (C) and nitrogen (N) properties of water and sediments from sand, seagrass, intertidal silt-mud, and intertidal marsh habitats of the Goodwin Islands (located within the Chesapeake Bay National Estuarine Research Reserve in Virginia, CBNERR-VA) were determined seasonally. Spatial and temporal differences in sediment microalgal biomass among the habitats were assessed along with annual variations in the distribution and abundance ofZostera marina L. andSpartina alterniflora Loisel. Phytoplankton biomass displayed some seasonality related to riverine discharge, but sediment microalgal biomass did not vary spatially or seasonally. Macrophytes in both subtidal and intertidal habitats exhibited seasonal biomass patterns that were consistent with other Atlantic estuarine ecosystems. Marsh sediment organic carbon and inorganic nitrogen differed significantly from that of the sand, seagrass, and silt habitats. The only biogeochemical variable that exhibited seasonality was low marsh NH4 +. The subtidal sediments were consistent temporally in their carbon and nitrogen content despite seasonal changes in seagrass abundance. Eelgrass has a comparatively low C:N ratio and is a potential N sink for the ecosystem. Changes in the composition or size of the vegetated habitats could have a dramatic influence over resource partitioning within the ecosystem. A spatial database (or geographic information system, GIS) of the Goodwin Islands site has been initiated to track long-term spatial habitat features and integrate model output and field data. This ecosystem characterization was conducted as part of efforts to link field data, geographic information, and the dynamic simulation of multiple habitats. The goal of these efforts is to examine ecological structure, function, and change in fringing environments of lower Chesapeake Bay.  相似文献   

16.
In the hypersaline lagoon at Laguna Figueroa vertically stratified diverse communities of microorganisms thrive. The modern sediments of Baja California at Laguna Figueroa contain cyanobacterial communities and sedimentary structures produced by these blue greens that have already been studied by Horodyski and his colleagues. This paper provides an introduction to the complex microbial communities, primarily those that underlie the laminated Microcoleus mats. They are composed of anaerobic photosynthetic and heterotrophic bacteria.The following genera of cyanobacteria at least are components of these mat communities: Lyngbya, Microcoleus, Entophysalis, Phormidium, Pseudoanabaena, Anabaena and Schizothrix. Among the photosynthetic bacteria several species of Thiocapsa-like microbes formed major surface components of certain mats and scums; rhodospirilli, rhodopseudomonads, chromatis and others were seen.The following nonphotosynthetic bacteria were identified: Nocardia sp., three types of spirilli, two types of Spirochaeta sp., two types of Desulfovibria sp., a new strain of red Beneckea and four distinctive unidentified coccoid and filamentous bacteria. Reasons are given for believing several of the species are new to science and that the microbial diversity is far greater than the approximately twenty species reported here. Eukaryotes are extremely rare. Only one species of animal, a herpachtechoid copepod, was ever seen in the 8-km long microbial communities of the hypersaline basin. Dunaliella salina, a chlorophyte and Aspergillus sydowi, an ascomycetous fungus were the only eukaryotes that were observed to be regular components of mat communities. Ciliates, amoebae (including a chrysarchnion-like microbe) and diatom tests, mostly empty, were the only other eukaryotes observed. Attempts to enrich for eukaryotic microorganisms were not successful whereas attempts to enrich for bacteria, especially anaerobes led to such a profusion of forms that to continue detailed study of them was beyond our means. Unidentified small rods and cocci constituted the largest fraction of individuals in the subsurface community. The microbes isolated from mats are adapted for alternating dry and wet conditions as well as high concentrations of salt and low concentrations of oxygen.  相似文献   

17.
An abundant and diverse fauna of thoracican cirripedes is described on the basis of over 3000 isolated valves collected from a single lens of material representing in the order of a few thousand years of Campanian time (c. 80 Ma), from sediment formed on and close to a rocky shoreline at Ivö Klack in southern Sweden. At least twenty-eight species are present in the fauna, belonging to scalpelliform and basal sessile taxa. Two families (Myolepadidae and Titanolepadidae) and four genera are new (Myolepas, Bosquetlepas, Levelepas and Ivoelepas), as are seven species (Titanolepas spinifer, Levelepas roeperi, Ivoelepas nielseni, Arcoscalpellum scaniensis, Pollicipes vansyoci and P. (?) striatum). The palaeoecology is discussed with reference to extant cirripede faunas from rocky coastal environments. It is concluded that, although many taxa lived subtidally, the pollicipedids and pollicipedid-like forms (Capitulum, Pollicipes and Myolepas, respectively) lived in the intertidal zone, attached to rocks in a high-energy environment. Pachydiadema, a large basal balanomorph species, was adapted to living attached to boulders in the intertidal zone. The remarkable diversity significantly exceeds that of any known fossil thoracican assemblage, and is unknown in similar habitats at the present day, possibly challenging Darwin's famous quip that we currently live in the ‘Age of Barnacles’.  相似文献   

18.
The availability of particulate Fe(III) to iron reducing microbial communities in sediments and soils is generally inferred indirectly by performing chemical extractions. In this study, the bioavailability of mineral-bound Fe(III) in intertidal sediments of a eutrophic estuary is assessed directly by measuring the kinetics and extent of Fe(III) utilization by the iron reducing microorganism Shewanella putrefaciens, in the presence of excess electron donor. Microbial Fe(III) reduction is compared to chemical dissolution of iron from the same sediments in buffered ascorbate-citrate solution (pH 7.5), ascorbic acid (pH 2), and 1 M HCl. The results confirm that ascorbate at near-neutral pH selectively reduces the reactive Fe(III) pool, while the acid extractants mobilize additional Fe(II) and less reactive Fe(III) mineral phases. Furthermore, the maximum concentrations of Fe(III) reducible by S. putrefaciens correlate linearly with the iron concentrations extracted by buffered ascorbate-citrate solution, but not with those of the acid extractions. However, on average, only 65% of the Fe(III) reduced in buffered ascorbate-citrate solution can be utilized by S. putrefaciens, probably due to physical inaccessibility of the remaining fraction of reactive Fe(III) to the cells. While the microbial and abiotic reaction kinetics further indicate that reduction by ascorbate at near-neutral pH most closely resembles microbial reduction of the sediment Fe(III) pool by S. putrefaciens, the results also highlight fundamental differences between chemical reductive dissolution and microbial utilization of mineral-bound ferric iron.  相似文献   

19.
Ancient microbialites reflect interactions between microbial communities and environmental conditions. However, evaluating the relative roles of microbial community processes and environmental influences on microbialite morphology and internal fabric in the rock record can be challenging. The Neoproterozoic Beck Spring Dolomite preserves diverse microbialites, and thus provides an opportunity to explore the factors that influenced microbialite development locally. Stromatolitic, thrombolitic and composite microbialites are abundant in subtidal to upper intertidal carbonates in the Beck Spring Dolomite. Thrombolitic and composite microbialites have not been recognized previously in this unit, but compose much of the newly defined thrombolitic member. Stratigraphic relationships demonstrate that these three types of microbialites formed in close spatial and temporal association in subtidal to intertidal environments. The relative proportions and distributions of stromatolitic and thrombolitic microbialites vary with depositional environment; stromatolitic microbialites dominate in deeper intertidal to subtidal facies, whereas thrombolitic textures are more abundant in upper intertidal facies. Composite microbialites, composed of intermingled clotted and laminated textures, formed in all environments but are most abundant in intertidal facies. The broad environmental distribution of stromatolitic, thrombolitic and composite microbialites and the intermingling of textures suggest that laminated and clotted textures reflect diverse microbial community morphologies rather than environmental variations. Furthermore, the ca 750 Ma age of thrombolitic microbialites in the Beck Spring Dolomite requires that they formed without the influence of calcimicrobes or metazoans colonizing and grazing the microbial mat surface. Thus, these thrombolites provide further evidence that the biostratigraphic distribution of thrombolites cannot be uniquely attributed to evolution of calcifying and grazing organisms in the earliest Cambrian, and that older microbial communities were capable of producing clotted textures.  相似文献   

20.
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号