首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

2.
The shallow aquifer beneath the Western Snake River Plain (Idaho, USA) exhibits widespread elevated arsenic concentrations (up to 120 μg L−1). While semi-arid, crop irrigation has increased annual recharge to the aquifer from approximately 1 cm prior to a current rate of >50 cm year−1. The highest aqueous arsenic concentrations are found in proximity to the water table (all values >50 μg L−1 within 50 m) and concentrations decline with depth. Despite strong vertical redox stratification within the aquifer, spatial distribution of aqueous species indicates that redox processes are not primary drivers of arsenic mobilization. Arsenic release and transport occur under oxidizing conditions; groundwater wells containing dissolved arsenic at >50 μg L−1 exhibit elevated concentrations of O2 (average 4 mg L−1) and NO3 (average 8 mg L−1) and low concentrations of dissolved Fe (<20 μg L−1). Sequential extractions and spectroscopic analysis of surficial soils and sediments indicate solid phase arsenic is primarily arsenate and is present at elevated concentrations (4–45 mg kg−1, average: 17 mg kg−1) relative to global sedimentary abundances. The highest concentrations of easily mobilized arsenic (up to 7 mg kg−1) are associated with surficial soils and sediments visibly stained with iron oxides. Batch leaching experiments on these materials using irrigation waters produce pore water arsenic concentrations approximating those observed in the shallow aquifer (up to 152 μg L−1). While As:Cl aqueous phase relationships suggest minor evaporative enrichment, this appears to be a relic of the pre-irrigation environment. Collectively, these data indicate that infiltrating irrigation waters leach arsenic from surficial sediments to the underlying aquifer.  相似文献   

3.
The occurrence of mining areas in the vicinities of salt marshes may affect their ecological functions and facilitate the transfer of pollutants into the food chain. The mobilisation of metals in salt marsh soils is controlled by abiotic (pH, redox potential) and biotic (influence of rhizosphere) factors. The effect of the rhizosphere of two plant species (Sarcocornia fruticosa and Phragmites australis) and different flooding regimes on potentially harmful metals and As mobilisation from salt marsh soil polluted by mining activities were investigated (total concentrations: 536 mg kg−1 As, 37 mg kg−1 Cd, 6746 mg kg−1 Pb, 15,320 mg kg−1 Zn). The results show that the changes in redox conditions (from 300 mV to −100 mV) and pH after flooding and rewetting periods may mobilise the contaminant elements into soil solution (e.g., 100 μg L−1 Cd, 30 μg L−1 Pb, 7 mg L−1 Zn), where they are available for plants or may be leached from the soil. Drying periods generated peaks of concentrations in the soil solution (up to 120 μg L−1 Cd and 50 μg L−1 Pb). The risk assessment of As and metal-polluted salt marshes should take into account flood dynamics in order to prevent metal(loid) mobilisation.  相似文献   

4.
5.
Insightful knowledge of geochemical processes controlling As mobility is fundamental to understanding the occurrence of elevated As in groundwater. A comparative study of As geochemistry was conducted in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), two strongly As-enriched areas in China. The results show that As concentrations ranged from <1–1160 μg L−1 (n = 37) in the Datong Basin and <1–804 μg L−1 (n = 62) in the Hetao Basin. The groundwater is of the Na-HCO3 type in the Datong Basin and Na-Cl-HCO3 type in the Hetao Basin. Silicate mineral weathering and cation exchange processes dominated the groundwater geochemistry in the two study areas. Principal component analysis of 99 groundwater samples using 12 geochemical parameters indicated positive correlations between concentrations of As and Fe/Mn in the Datong Basin, but no correlation of As and Fe/Mn in the Hetao Basin. Phosphate correlated well with As in the Datong Basin and Hetao Basin, suggesting phosphate competition might be another process affecting As concentrations in groundwater. High concentrations of As, Fe, and Mn occurred in the pe range −2 to −4. The results of this study further understanding of the similarities and differences of As occurrence and mobility at various locations in China.  相似文献   

6.
Groundwater is the main source of drinking water for the population of nearly 200,000 people in eastern Croatia. The largest town in the region is Osijek whose citizens are supplied with drinking water obtained from groundwater from the “Vinogradi” well field. This study investigated and determined As occurrence in groundwater of the Osijek area. Groundwater samples were taken from 18 water wells and 12 piezometers with a depth ranging between 21 and 200 m. Over the 10-a period to 2007, a mean As concentration of 240 μg L−1 was found. There was no statistically significant secular change in concentration over that period, however small but significant seasonal variations were noted, with the highest seasonal As concentrations over the period May 2006-February 2007 being observed in summer. The predominant As species observed was As(III), constituting 85% and 93% of total As in piezometers and water wells, respectively. Higher concentrations of As tended to be found in deeper wells with the mean As concentration in shallow groundwater (<50 m) and deep groundwater (>50 m) being 27 μg L−1, and 205 μg L−1, respectively. Geochemically, the groundwaters show similarities to those in other parts of the Pannonian Basin. Arsenic(tot) is weakly correlated with pH and Fe, negatively correlated with Mn and has no significant correlation with any of EC, COD-Mn or alkalinity.  相似文献   

7.
This study focused on the analysis of As levels in human hair samples collected from six villages in the Kandal Province of Cambodia. Of interest were the influence of, and interactions among, certain factors affecting As intake into the human body: As concentrations in groundwater, period of groundwater consumption, age and gender. The results revealed As levels in human hair ranging from 0.06 to 30 μg g−1 with median and arithmetic mean values of 0.61 and 3.20 μg g−1 (n = 68), respectively. Furthermore, a linear relationship was found between As concentrations in human hair and in the local groundwater. Arsenic (III) is the dominant species in Kandal groundwater, constituting in most cases at least 60% of the total As. Arsenic concentration ranged from 5 to 1543 μg L−1, with the median value 348 μg L−1 and arithmetic mean 454 μg L−1. In large rural, poor areas holding most of Kandal’s 1.1 million people, up to 2 in 1000 people are believed to be at risk of cancer through the As-enriched water they drink. A toxicity risk assessment provides a hazard quotient (HQ) equaling 5.12, also a clear indication of non-carcinogenic exposure risk. On the authors’ visit to Kampong Kong commune, Kandal Province, cases of arsenicosis were diagnosed in patients as a result of drinking As-enriched groundwater.  相似文献   

8.
Hydrochemical patterns resulting from differing bedrock geochemistry were ascertained by concurrent streamwater sampling in three small catchments, each underlain by geochemically contrasting silicate rock types in the western Czech Republic, Central Europe in 2001–2010. The catchments are situated 5–7 km apart in the Slavkov Forest and are occupied by Norway spruce (Picea abies) plantations. They have similar altitude, area, topography, mean annual air temperature, and atmospheric deposition fluxes. The amount of base cations oxides (Ca + Mg + Na + K) is markedly different among the three studied rocks (leucogranite 8%, amphibolite 22%, serpentinite 36%). The leucogranite contains a very small amount of MgO, while the serpentinite contains extremely large amounts of MgO. The amphibolite contains an intermediate amount of MgO and elevated CaO. The Lysina, on leucogranite, exhibited very small concentrations of Mg (median 0.4 mg L−1) in streamwater; Pluh?v Bor, on serpentinite, contained extremely high concentrations of streamwater Mg (18 mg L−1). Streamwater in the Na Zeleném catchment, on amphibolite, contained an intermediate amount of Mg and an elevated Ca. Very low pH (4.2), negative alkalinity (−60 μeq L−1) and high inorganic monomeric Al concentrations (0.3 mg L−1) were found in the stream draining leucogranite. Serpentinite streamwater exhibited the highest pH (7.6), alkalinity (+940 μeq L−1) and Ni concentrations (100 μg L−1). Aquatic chemistry reflected the composition of the underlying rocks within the studied catchments. Contrasting streamwater compositions of the studied catchments were generated according to the MAGIC model simulations mainly by differences in chemical weathering rates of base cations (65 meq m−2 a−1 at Lysina, 198 meq m−2 a−1 at Na Zeleném, and 241 meq m−2 a−1 at Pluh?v Bor).  相似文献   

9.
Lead concentrations and isotopic composition of sediment samples collected from three sites within the Lebanese coastal zones were measured: at Akkar, Dora and Selaata. Akkar is located far from any direct source of contamination, while Dora and Selaata receive urban and industrial wastes, respectively. Low Pb concentrations (6–16 μg g−1) were detected in the Akkar sediments, and high concentrations of Pb (70–101 μg g−1) were detected in the Dora sediments. Measuring stable isotope ratios of Pb makes it possible to identify the principal sources of Pb in the Akkar sediments as Pb emitted from gasoline combustion and Pb originating from natural sources. On the other hand, Pb stable isotopic ratios in Dora sediments indicate that they are more highly influenced by anthropogenic sources. Isotopic Pb ratios in the Selaata deposits, where Pb concentrations range between 5 and 35 μg g−1, have an exceptional radiogenic signature for marine sediments 1.25 < 206Pb/207Pb < 1.6 and 0.5 < 206Pb/208Pb < 0.67, which shows the impact of the phosphogypsum discharged by Selaata’s chemical plant. Isotopic Pb analysis applied to EDTA extracts, to test the mobility of Pb, shows that that this mobility is high (>60%) after 24 h of extraction, and that the extracted Pb is less radiogenic than the residual Pb.  相似文献   

10.
There are increasing concerns with elevated levels of Cr(VI) in the environment because it is a strong oxidant, corrosive, and carcinogenic. The concerns extend to the presence of Cr(VI) in many aquifers in California and elsewhere, where relatively high levels have been attributed to both industrial pollution and natural processes. The authors have, therefore, determined if natural redox processes contribute to the presence of high Cr(VI) concentrations (6–36 μg L−1) in an aquifer in central California relative to non-detectable concentrations (<0.1 μg L−1) in an adjacent aquifer. Specifically, the distribution and the redox speciation of dissolved (<0.45 μm) Cr have been compared with those of particulate Mn and Fe oxy-hydroxides in sediments, using X-ray absorption spectroscopy at the Mn and Fe L-edges. The analyses show a correlation between the presence of dissolved Cr(VI) and Mn (hydr)oxide minerals, which are the only common, naturally occurring minerals known to oxidize Cr(III) in laboratory experiments. This covariance substantiates the results of those experiments and previous field studies that indicate natural oxidation mechanisms might account for the relatively high levels of Cr(VI) in the study site, as well as for elevated concentrations in other aquifers with similar biogeochemical conditions.  相似文献   

11.
This study describes the hydrogeochemistry and distributions of As in groundwater from a newly investigated area of Burkina Faso. Groundwaters have been sampled from hand-pumped boreholes and dug wells close to the town of Ouahigouya in northern Burkina Faso. Although most analysed groundwaters have As concentrations of less than 10 μg L−1, they have a large range from <0.5 to 1630 μg L−1. The highest concentrations are found in borehole waters; all dug wells analysed in this study have As concentrations of <10 μg L−1. Skin disorders (melanosis, keratosis and more rare skin tumour) have been identified among the populations in three villages in northern Burkina Faso, two within the study area. Although detailed epidemiological studies have not been carried out, similarities with documented symptoms in other parts of the world suggest that these are likely to be linked to high concentrations of As in drinking water. The high-As groundwaters observed derive from zones of Au mineralisation in Birimian (Lower Proterozoic) volcano-sedimentary rocks, the Au occurring in vein structures along with quartz and altered sulphide minerals (pyrite, chalcopyrite, arsenopyrite). However, the spatial variability in As concentrations in the mineralised zones is large and the degree of testing both laterally and with depth so far is limited. Hence, concentrations are difficult to predict on a local scale. From available data, the groundwater appears to be mainly oxic and the dissolved As occurs almost entirely as As(V) although concentrations are highest in groundwaters with dissolved-O2 concentrations <2 mg L−1. The source is likely to be the oxidised sulphide minerals and secondary Fe oxides in the mineralised zones. Positive correlations are observed between dissolved As and both Mo and W which are also believed to be derived from ore minerals and oxides in the mineralised zones. The discovery of high As concentrations in some groundwaters from the Birimian rocks of northern Burkina Faso reiterates the need for reconnaissance surveys in mineralised areas of crystalline basement.  相似文献   

12.
Uranium and As in deep groundwater of the volcano-sedimentary Villa de Reyes Graben around the city of San Luis Potosí in semi-arid North-Central Mexico (mean U: 7.6 μg L−1, max. 138 μg L−1; mean As: 11.4 μg L−1, max. 25.8 μg L−1) partly exhibit concentrations in excess of the WHO guideline values and thus endanger the quality of the most important drinking water source. To unravel the mechanisms for their enrichment in groundwater, the potential trace element sources, volcanic rocks and basin fill sediments, were characterized. A total of 131 solid and liquid samples were analyzed for major and trace element composition. The As/U hydrogeochemical signatures, their behavior during rock alteration and evidence from other major and trace element distributions, especially rare earth elements, strongly argue for dissolution of acid volcanic glass to be the dominating process of U and As release into groundwater. This natural baseline quality representing water–acid volcanic rock interaction is modified by additional trace element (preferentially As) mobilization from the sedimentary basin fill, representing a secondary source, in the course of decarbonatization of playa lake sediments and desorption from Fe-(hydr)oxide coated clastic material. The common behavior of both elements during magmatic differentiation and growing drift apart in sedimentary environments are important findings of this work. Comparison with recent findings in a similar environment suggests a common primary trace element source identification but significant differences in the evolution of As and U distribution. Geological and climatic similarity to numerous volcano-sedimentary basins makes the findings useful for water management purposes and transferable to other semi-arid regions facing challenges of geogenically impacted drinking water quality.  相似文献   

13.
Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L−1 within the Sacramento River to 39.9 mg L−1 at the outfall from an island drain (median 3.0 mg L−1), while lignin concentrations ranged from 3.0 μg L−1 within the Sacramento River to 111 μg L−1 at the outfall from an island drain (median 11.6 μg L−1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)−1 at an island drain to 0.84 mg (100 mg OC)−1 for a wetland (median 0.36 mg (100 mg OC)−1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized landscape features, and is also the first to indicate a significant negative correlation between lignin and DOC bioavailability within environmental samples. Based upon observed trends: (1) Delta features exhibit significant spatial variability in organic chemical composition, and (2) localized Delta features appear to exert strong controls on terrigenous DOC as it passes through the Delta and is exported into the Pacific Ocean.  相似文献   

14.
Waters from abandoned Sb-Au mining areas have higher Sb (up to 2138 μg L−1), As (up to 1252 μg L−1) and lower Al, Zn, Li, Ni and Co concentrations than those of waters from the As-Au mining area of Banjas, which only contain up to 64 μg L−1 As. In general, Sb occurs mainly as SbO3 and As H2AsO4. In general, waters from old Sb-Au mining areas are contaminated in Sb, As, Al, Fe, Cd, Mn, Ni and NO2, whereas those from the abandoned As-Au mining area are contaminated in Al, Fe, Mn, Ni, Cd and rarely in NO2. Waters from the latter area, immediately downstream of mine dumps are also contaminated in As. In stream sediments from Sb-Au and As-Au mining areas, Sb (up to 5488 mg kg−1) and As (up to 235 mg kg−1) show a similar behaviour and are mainly associated with the residual fraction. In most stream sediments, the As and Sb are not associated with the oxidizable fraction, while Fe is associated with organic matter, indicating that sulphides (mainly arsenopyrite and pyrite) and sulphosalts containing those metalloids and metal are weathered. Arsenic and Sb are mainly associated with clay minerals (chlorite and mica; vermiculite in stream sediments from old Sb-Au mining areas) and probably also with insoluble Sb phases of stream sediments. In the most contaminated stream sediments, metalloids are also associated with Fe phases (hematite and goethite, and also lepidocrocite in stream sediments from Banjas). Moreover, the most contaminated stream sediments correspond to the most contaminated waters, reflecting the limited capacity of stream sediments to retain metals and metalloids.  相似文献   

15.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   

16.
The presence of PAHs, n-alkanes, pristane, and phytanes in core sediment from the Vossoroca reservoir (Parana, southern Brazil) was investigated. The total concentration of the 16 PAHs varied from 15.5 to 1646 μg kg−1. Naphthalene was present in all layers (3.34–74.0 μg kg−1). The most abundant and dominant n-alkanes were n-C15 and n-C36, with average concentrations of 198.1 ± 46.8 and 522.9 ± 167.7 μg kg−1, respectively. Lighter n-alkanes were distributed more evenly through the layers and showed less variation, specially n-C9, n-C12, and n-C18, with average concentrations of 14.6 ± 3.0, 31.6 ± 1.9, and 95.0 ± 5.2 μg kg−1, respectively; heavier n-alkanes were more unevenly distributed.  相似文献   

17.
The present study demonstrates the importance of hydrogeochemical characteristics (groundwater flow and recharge) of an aquifer in the release of As to groundwater. The study area (∼20 km2) is located in Chakdaha block, Nadia district, West Bengal, which hosts groundwaters of variable As content. The spatial distribution pattern of As is patchy with areas containing groundwater that is high in As (>200 μg L−1) found in close vicinity to low As (<50 μg L−1) groundwaters (within 100 m). The concentration of groundwater As is found to decrease with depth. In addition, the data shows that there is no conspicuous relationship between high groundwater As concentration and high groundwater abstraction, although the central cone of depression has enlarged over 2 a and is extending towards the SE of the study area. The river Hooghly, which forms the NW boundary of the study site, shows dual behaviour (effluent and influent during pre- and post-monsoon periods, respectively), complicating the site hydrogeology. The observed groundwater flow lines tend to be deflected away from the high As portion of the aquifer, indicating that groundwater movement is very sluggish in the As-rich area. This leads to a high residence time for this groundwater package, prolonging sediment–water interaction, and hence facilitating groundwater As release.  相似文献   

18.
Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5–1.5 μg L−1 at one site to 2–5 μg L−1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3–4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C–CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C–CHCl3.  相似文献   

19.
20.
The Wanshan Hg mining area in Guizhou, China, was one of the world’s largest Hg producing regions. Numerous mine-waste and calcines still remain, leaching Hg to local rivers and streams and potentially impacting the local population. Several studies have been published on local environmental impacts of these mining and retorting residues, but a comprehensive, regional survey on the distribution of Hg in the rivers in the region, as presented in this paper, has not previously been conducted. This study focuses on the regional distribution and temporal variation of aqueous Hg fractions in the five main watercourses draining the Wanshan Hg mining and retorting area, covering more than 700 km2. Three sampling campaigns were carried out in 2007 and 2008, covering high flow, normal flow and low flow periods. Total (THg), particulate (PHg), dissolved (DHg) and reactive (RHg) Hg fractions were determined. All rivers had the highest Hg concentrations at sample sites about 100–500 m downstream of the mine wastes. Total Hg concentrations ranged from extremely high (up to 12,000 ng L−1) at the sample site just 100 m below mine wastes, to quite low in tributary streams (1.9 ng L−1, about 14 km downstream of the mine wastes). Total Hg and PHg concentrations were usually highest during high flow periods in the Hg-contaminated areas (i.e. THg ? 50 ng L−1), while in the less-impacted downstream areas (with THg < 50 ng L−1) the Hg concentrations were usually lowest during high flow periods. Although highly elevated concentrations of Hg in water samples were found just downstream of the mine wastes, the concentrations decreased sharply to well below 50 ng L−1 (US EPA Hg concentration standard for protection of fresh water), within only 6–8 km downstream. Concentrations of THg were highly dominated by and correlated with PHg (R2 = 0.996–0.999, P < 0.001); PHg constituted more than 80% of THg in Hg-contaminated areas, and could account for 99.6% of the THg close to the mine wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号