首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

2.
The inorganic chemistry of 85 samples of bottled natural mineral waters and spring waters has been investigated from 67 sources across the British Isles (England, Wales, Scotland, Northern Ireland, Republic of Ireland). Sources include boreholes, springs and wells. Waters are from a diverse range of aquifer lithologies and are disproportionately derived from comparatively minor aquifers, the most represented being Lower Palaeozoic (10 sources), Devonian Sandstone (10 sources) and Carboniferous Limestone (9 sources). The waters show correspondingly variable major-ion compositions, ranging from Ca–HCO3, through mixed-cation–mixed-anion to Na–HCO3 types. Concentrations of total dissolved solids are mostly low to very low (range 58–800 mg/L). All samples analysed in the study had concentrations of inorganic constituents well within the limits for compliance with European and national standards for bottled waters. Concentrations of NO3–N reached up to half the limit of 11.3 mg/L, although 62% of samples had concentrations <1 mg/L. Concentrations of Ba were high (up to 1010 μg/L) in two spring water samples. Such concentrations would have been non-compliant had they been classed as natural mineral waters, although no limit exists for Ba in European bottled spring water. In addition, though no European limit exists for U in bottled water, should a limit commensurate with the current WHO provisional guideline value for U in drinking water (15 μg/L) be introduced in the future, a small number of groundwater sources would have concentrations close to this value. Two sources had groundwater U concentrations > 10 μg/L, both being from the Welsh Devonian Sandstone. The highest observed U concentration was 13.6 μg/L.  相似文献   

3.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

4.
Twenty-nine wells were selected for groundwater sampling in the town of Shahai, in the Hetao basin, Inner Mongolia. Four multilevel samplers were installed for monitoring groundwater chemistry at depths of 2.5–20 m. Results show that groundwater As exhibits a large spatial variation, ranging between 0.96 and 720 μg/L, with 71% of samples exceeding the WHO drinking water guideline value (10 μg/L). Fluoride concentrations range between 0.30 and 2.57 mg/L. There is no significant correlation between As and F concentrations. Greater As concentrations were found with increasing well depth. However, F concentrations do not show a consistent trend with depth. Groundwater with relatively low Eh has high As concentrations, indicating that the reducing environment is the major factor controlling As mobilization. Low As concentrations (<10 μg/L) are found in groundwater at depths less than 10 m. High groundwater As concentration is associated with aquifers that have thick overlying clay layers. The clay layers, mainly occurring at depths <10 m, have low permeability and high organic C content. These strata restrict diffusion of atmospheric O2 into the aquifers, and lead to reducing conditions that favor As release. Sediment composition is an additional factor in determining dissolved As concentrations. In aquifers composed of yellowish-brown fine sands at depths around 10 m, groundwater generally has low As concentrations which is attributed to the high As adsorption capacity of the yellow–brown Fe oxyhydroxide coatings. Fluoride concentration is positively correlated with pH and negatively correlated with Ca2+ concentration. All groundwater samples are over-saturated with respect to calcite and under-saturated with respect to fluorite. Dissolution and precipitation of Ca minerals (such as fluorite and calcite), and F adsorption–desorption are likely controlling the concentration of F in groundwater.  相似文献   

5.
6.
Soil and water samples were collected from farmsteads and provincial towns across the provinces of La Pampa and San Juan in Argentina. Inductively coupled plasma mass spectrometry was used for the determination of iodine in water following addition of TMAH to 1% v/v and soils extracted with 5% TMAH. Iodine in agricultural soils was in the range of 1.3–20.9 mg/kg in La Pampa located in central Argentina and 0.1–10.5 mg/kg in San Juan located in the northwest Andean region of Argentina, compared to a worldwide mean of 2.6 mg/kg. Mean selenium concentrations for soils from both provinces were 0.3 mg/kg, compared to a worldwide mean of 0.4 mg/kg. The majority of soils were slightly alkaline at pH 6.7 to 8.8. The organic content of soils in La Pampa was 2.5–5.9% and in San Juan 0.1–2.3%, whilst, mobile water extractable soil-iodine was 1–18% for La Pampa and 2–42% for San Juan. No simple relationship observed for pH and organic content, but mobile iodine (%) was highest when organic content was low, higher for lower total iodine concentrations and generally highest at pH > 7.5. Water drawn for drinking or irrigation of a variety of crops and pasture was found to range from 52 to 395 µg/L iodine and 0.8 to 21.3 µg/L selenium in La Pampa and 16–95 µg/L iodine and 0.6 to 8.2 µg/L selenium in San Juan. The water samples were all slightly alkaline between pH 8 and 10. Water–iodine concentrations were highest at pH 7.8 to 8.8 and in groundwaters positively correlated with conductivity. Raw water entering water treatment works in La Pampa was reduced in iodine content from approximately 50 µg/L in raw water to 1 µg/L in treated drinking water, similar to levels observed in regions experiencing iodine deficiency.  相似文献   

7.
Lacustrine sediments, submerged tailings, and their pore waters have been collected at several sites in Yellowknife Bay, Great Slave Lake, Canada, in order to investigate the biogeochemical controls on the remobilization of As from mining-impacted materials under different depositional conditions. Radiometric dating confirms that a mid-core enrichment of Pb, Zn, Cu and Sb corresponds to the opening of a large Au mine 60 a ago. This was evident even in a relatively remote site. Arsenic was enriched at mid-core, coincident with mining activity, but clearly exhibited post-depositional mobility, migrating upwards towards the sediment water interface (SWI) as well as down-core. Deep-water (15 m) Yellowknife Bay sediments that contain buried mine waste are suboxic, relatively organic-rich and abundant in microbes with As in pore waters and sediments reaching 585 μg/L and 1310 mg/kg, respectively. Late summer pore waters show equal proportions of As(III) and As(V) (16–415 μg/L) whereas late winter pore waters are dominated by As(III) (284–947 μg/L). This can be explained by As(III) desorption mechanisms associated with the conversion of FeS to FeS2 and the reduction of As(V) to As(III) through the oxidation of dissolved sulfide, both microbially-mediated processes. Processes affecting As cycling involve the attenuating efficiency of the oxic zone at the SWI, sediment redox heterogeneity and the reductive dissolution of Fe(hydr)oxides by labile organic matter, temporarily and spatially variable.  相似文献   

8.
In order to examine the extent of the As enrichment and the factors influencing this enrichment in the groundwater of Eastern Croatia, groundwater samples were collected from 56 production wells in two counties, Osijek-Baranja and Vukovar-Srijem, suspected to be more affected. Hydrochemical analyses were performed at all locations including in situ As speciation at 32 locations. Arsenic was detected in 46 out of 56 groundwater samples with total As concentrations up to 491 μg/L. Thirty-six of the studied wells yielded groundwater with total As concentrations that exceeded the WHO Maximum Contaminant Level for arsenic in drinking water of 10 μg/L. Only inorganic As species were detected with arsenite As(III) as the predominant form. The spatial distribution of As in the groundwater was significantly linked with geological, geomorphological and hydrogeological development of the alluvial basin of the Drava and Sava rivers. The most probable groundwater As sources are deeper sediments from the Middle and Upper Pleistocene. The results obtained suggest that biogeochemical processes controlling As concentration in the groundwater are complex and location-specific. Reductive dissolution of Fe oxides, desorption of As from Fe oxides and/or clay minerals as well as competition for the sorption sites with organic matter and phosphate could be the principal mechanisms that control As mobilization. The extent of those processes vary in the different parts of the Drava and Sava depressions and could be linked to different site related parameters, such as lithology, mineralogy, local hydrology and hydrogeology; thus different processes of As mobilization have been proposed for the different types of water in relation to groundwater evolution.  相似文献   

9.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

10.
The concentrations of 16 trace elements (Ag, Al, As, B, Ba, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Se, Ti, U, and Zn) in drinking water from Najran City, Saudi Arabia, were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and compared with local, regional, and international guidelines. Water samples from 22 water treatment plants and 13 commercial bottled water brands were analyzed. Except for B and U, the trace element concentrations were below the permitted limits defined in SASO, GSO, and WHO drinking water quality guidelines. The B concentrations in three brands of bottled water were 533.19, 602.29, and 1471.96 μg/L, which were all higher than the GSO and SASO limit (500 μg/L). The U concentrations were higher than the SASO limits for drinking water in two samples; one in treatment plant (2.39 μg/L) and another in foreign bottled water (2.17 μg/L). The median As, Ba, Cu, Ni, U, and Zn concentrations were statistically significantly higher in the treatment plant water samples than those in the bottled water samples, and conversely, the B concentrations were higher in the bottled water samples. The Cd, Hg, and Ti concentrations were below the detection limits of ICP-MS in all of the water samples. Apart from few exceptions, trace element concentrations in drinking water of Najran City were all within limits permitted in the national, regional, and international drinking water quality guideline values.  相似文献   

11.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   

12.
The Drenchwater shale-hosted Zn–Pb–Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ? 4.3, Zn ? 1400 μg/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7–3.1) and very metal-rich waters (up to 2600 μg/L Zn, ? 260 μg/L Cu and ?89 μg/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.  相似文献   

13.
Naturally occurring As found in groundwaters has been identified to be a problem in at least 10 provinces of Cambodia with Kandal being one of the most heavily impacted. Estimates, using groundwater quality and population data for Kandal Province of Cambodia, suggest that over 100,000 people are at high risk of chronic As exposure. Levels in some areas approach 3500 μg/L, against the Cambodian Standard of 50 μg/L. Considerable work remains to adequately characterize the extent of As hazard and its possible health effects in Cambodia and the region. It is likely that additional populations will develop health problems attributed to As, of particular concern is arsenicosis. The symptoms of arsenicosis have been generally assumed to develop after 8–10 years of consumption of water with elevated As levels, however, new cases discovered in Cambodia have been identified with exposure times as short as 3 years. The rapid onset of arsenicosis may be attributed to contributing risk factors related to socioeconomic status, including malnutrition. It is thus imperative to develop strategies to rapidly identify possible regions of enrichment, to minimize exposure to As-rich waters, and to educate affected populations. To date the response to the As hazard has been led by the Ministry of Rural Development in cooperation with international organizations and NGOs, to identify at risk areas, and educate communities of the risk of As-rich water. However better coordination between government bodies, NGOs and donor agencies active in the field of water supply and treatment is essential to minimize future As exposure.  相似文献   

14.
Groundwater is the main source of drinking water for the population of nearly 200,000 people in eastern Croatia. The largest town in the region is Osijek whose citizens are supplied with drinking water obtained from groundwater from the “Vinogradi” well field. This study investigated and determined As occurrence in groundwater of the Osijek area. Groundwater samples were taken from 18 water wells and 12 piezometers with a depth ranging between 21 and 200 m. Over the 10-a period to 2007, a mean As concentration of 240 μg L−1 was found. There was no statistically significant secular change in concentration over that period, however small but significant seasonal variations were noted, with the highest seasonal As concentrations over the period May 2006-February 2007 being observed in summer. The predominant As species observed was As(III), constituting 85% and 93% of total As in piezometers and water wells, respectively. Higher concentrations of As tended to be found in deeper wells with the mean As concentration in shallow groundwater (<50 m) and deep groundwater (>50 m) being 27 μg L−1, and 205 μg L−1, respectively. Geochemically, the groundwaters show similarities to those in other parts of the Pannonian Basin. Arsenic(tot) is weakly correlated with pH and Fe, negatively correlated with Mn and has no significant correlation with any of EC, COD-Mn or alkalinity.  相似文献   

15.
16.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

17.
The hydrogeochemical processes that took place during an aquifer storage and recovery (ASR) trial in a confined anoxic sandy aquifer (Herten, the Netherlands) were identified and quantified, using observation wells at 0.1, 8 and 25 m distance from the ASR well. Oxic drinking water was injected in 14 ASR cycles in the period 2000–2009. The main reactions consisted of the oxidation of pyrite, sedimentary organic matter, and (adsorbed) Fe(II) and Mn(II) in all aquifer layers (A–D), whereas the dissolution of carbonates (Mg-calcite and Mn-siderite) occurred mainly in aquifer layer D. Extinction of the mobilization of SO4, Fe(II), Mn(II), As, Co, Ni, Ca and total inorganic C pointed at pyrite and calcite leaching in layer A, whereas reactions with Mn-siderite in layer D did not show a significant extinction over time. Iron(II) and Mn(II) removal during recovery was demonstrated by particle tracking and pointed at sorption to neoformed ferrihydrite. Part of the oxidants was removed by neoformed organic material in the ASR proximal zone (0 – ca. 5 m) where micro-organisms grow during injection and die away when storage exceeds about 1 month. Anoxic conditions during storage led to increased concentrations for a.o. Fe(II), Mn(II) and NH4 as noted for the first 50–200 m3 of abstracted water during the recovery phase. With a mass balance approach the water–sediment reactions and leaching rate of the reactive solid phases were quantified. Leaching of pyrite and calcite reached completion at up to 8 m distance in layer A, but not in layer D. The mass balance approach moreover showed that Mn-siderite in layer D was probably responsible for the Mn(II) exceedances of the drinking water standard (0.9 μmol/L) in the recovered water. Leaching of the Mn-siderite up to 8 m from the ASR well would take 1600 more pore volumes of drinking water injection (on top of the realized 460).  相似文献   

18.
Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor [cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.  相似文献   

19.
This paper reports new geochemical data on dissolved major and minor constituents in surface waters and ground waters collected in the Managua region (Nicaragua), and provides a preliminary characterization of the hydrogeochemical processes governing the natural water evolution in this area. The peculiar geological features of the study site, an active tectonic region (Nicaragua Depression) characterized by active volcanism and thermalism, combined with significant anthropogenic pressure, contribute to a complex evolution of water chemistry, which results from the simultaneous action of several geochemical processes such as evaporation, rock leaching, mixing with saline brines of natural or anthropogenic origin. The effect of active thermalism on both surface waters (e.g., saline volcanic lakes) and groundwaters, as a result of mixing with variable proportions of hyper-saline geothermal Na–Cl brines (e.g., Momotombo geothermal plant), accounts for the high salinities and high concentrations of many environmentally-relevant trace elements (As, B, Fe and Mn) in the waters. At the same time the active extensional tectonics of the Managua area favour the interaction with acidic, reduced thermal fluids, followed by extensive leaching of the host rock and the groundwater release of toxic metals (e.g., Ni, Cu). The significant pollution in the area, deriving principally from urban and industrial waste-water, probably also contributes to the aquatic cycling of many trace elements, which attain concentrations above the WHO recommended limits for the elements Ni (∼40 μg/l) and Cu (∼10 μg/l) limiting the potential utilisation of Lake Xolotlan for nearby Managua.  相似文献   

20.
The market for mineral water has been growing steadily over the last few years. Germany is the country with the highest number of bottled mineral water brands (908 bottled water samples from 502 wells/brands were analyzed). The per capita consumption of mineral water in Germany in 2003 was 129 L. A wide range of values of one to seven orders of magnitude was determined for 71 elements in the bottled water samples analyzed by ICP-QMS, ICP-AES, IC, titration, photometric, conductometric and potentiometric methods. A comparison of the element concentrations and the legal limits for both bottled and tap water (EU, Germany, US EPA, WHO) shows that only 70% of the 908 mineral water samples fulfill the German and EU drinking water (i.e., tap water) regulations for all parameters (not including pH) for which action levels are defined. Nearly 5% of the bottled water samples not fulfill the German and EU regulations for mineral and table water. Comparison of our results with the current German and European action levels for mineral and table water shows that only 42 of the bottled water samples exceed the limits for one or more of the following elements: arsenic, nitrate, nitrite, manganese, nickel and barium concentrations. Ten of the bottled water samples contain uranium concentrations above the 10 μg/L recommended limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号