首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry.  相似文献   

2.
Fifteen sediment samples were studied from five drill sites recovered by the ‘Glomar Challenger’ on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids.Carbon isotope (δC13) data (values < ? 26%, relative to PDB), long-chain n-alkyl hydrocarbons ( ?C277) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized.The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.  相似文献   

3.
Particulate matter and interfacial sediment from a seasonally anoxic coastal salt pond were analyzed for fatty acids and sterols to examine variations in organic sources, and compositional changes across the oxic-anoxic interface in the water column and at the sediment-water interface. Fatty acid distributions in suspended particles varied seasonally and as a function of depth. Fatty acids of algal origin (e.g. 16:3, 16:4, 18:3, 18:4) were abundant in particles in oxic surface waters, but these labile components were depleted in particles from the anoxic zone which instead were enriched in bacterial fatty acids (e.g. 16:1Δ9, 18:1Δ11, anteiso-C15). Sterol distributionsvaried less than fatty acid distributions and particles throughout the water column reflected an upper water algal source with little in situ alteration. There was evidence for an in situ conversion of Δ5-stenols to 5(α)H-stanols in suspended particles in the anoxic zone. Sinking particles and the interfacial sediment were compositionally similar to each other, but different from suspended particles. These data reflect differences in particle source, transport and transformation processes occuring in the water column.  相似文献   

4.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

5.
In order to study the ‘in vitro’ fixation of metal ion species on algal and bacterial sedimentary organic matter, two algal mat samples have been studied. The main interest of this organic matter is its specific cyanobacterial origin. After isolation and purification, the organic matter was characterized by elemental and functional analysis, infrared spectroscopy. carbohydrates and amino-acid titration. These analyses indicate the richness of this type of organic matter in amino acids and carbohydrates, its poverty in aromatic structures, and to ascertain the types of bacteriological and chemical transformations undergone by the original biological compounds in the first steps of the diagenesis.  相似文献   

6.
Aliphatic hydrocarbon compositions were quantitatively characterized in plankton, sediment trap-collected particulate materials and sediments from Dabob Bay using high resolution glass capillary gas chromatography. The average net accumulation of individual hydrocarbons measured in a 1-yr series of sediment traps was compared with the net accumulation of corresponding compounds measured in three depth intervals of 210Pb-dated bottom sediments. Systematic and rapid decreases in the net accumulation of individual hydrocarbons were observed from the sediment traps to the sediments. Most pronounced decreases were measured for planktonically derived hydrocarbon constituents (e.g. pristane and two unsaturated compounds) which are rapidly remineralized at or near the sediment-water interface. Consequently, the amount of each compound measured in deposited sediments is not necessarily a quantitative indication of its initial flux to the sediments. The n-alkanes (C25,27,29,31). characteristic of terrestrial plant waxes, are the predominant hydrocarbons measured by 4–6 cm depth in these sediments and show reasonably constant net accumulation below this interval.Significant diagenetic alteration of the bulk organic matter contained in the average sediment trap particulate material is also noted through comparison with bottom sediments on the basis of organic C/N and δ13C measurements. Organic matter elementally similar to marine plankton is preferentially remineralized upon deposition of the sedimentary particulates. The residual organic matter remaining and buried in the bottom sediments closely resembles terrestrial organic matter.  相似文献   

7.
Suspended particulate materials and bottom sediments from the Cariaco Trench were analysed for lipid content to investigate the diagenesis of organic matter in an anoxic water column and sediment. Distributions of fatty acids, sterols, and the acyclic isoprenoid hydrocarbons, lycopane and 2,6,10,15,19-pentamethyleicosane, support the hypothesis that alteration of organic matter usually attributed to sedimentary diagenesis occurs in the water column. Typical indicators of diagenetic processes, including preferential loss of unsaturated fatty acids, increased abundances of branched fatty acids, stenol-to-stanol conversion, and abundant acyclic isoprenoids, were observed in the water column across the oxic/anoxic interface in the Cariaco Trench. Lipid distributions in the sediment were remarkably uniform with depth. We conclude that organic material delivered to the sediment has been extensively altered in the water column, but that which is buried is preserved without much additional alteration.  相似文献   

8.
《Applied Geochemistry》2005,20(3):455-464
In order to characterize the H isotopic compositions of individual lipid compounds from different terrestrial depositional environments, the δD values of C-bound H in individual n-alkanes from typical terrestrial source rocks of the Liaohe Basin and the Turpan Basin, China, were measured using gas chromatography–thermal conversion–isotope ratio mass spectrometry (GC–TC–IRMS). The analytical results indicate that the δD values of individual n-alkanes in the extracts of terrestrial source rocks have a large variation, ranging from −140‰ to −250‰, and are obviously lighter than the δD of marine-sourced n-alkanes. Moreover, a trend of depletion in 2H(D) was observed for individual n-alkanes from different terrestrial depositional environments, from saline lacustrine to freshwater paralic lacustrine, and to swamp. For example, the δD values of n-alkanes from a stratified saline lacustrine environment vary from −140‰ to −200‰, δD for n-alkanes from swamp facies range from −200‰ to −250‰, while those from freshwater paralic lacustrine–lacustrine environments fall between the δD values of the end members. The shift toward lighter δD from saltwater to freshwater environments indicates that the source water δD is the major controlling factor for the H isotopic composition of individual compounds. In addition, H exchange between formation water and sedimentary organic matter may possibly be important in regard to the δD of individual n-alkanes. Therefore, other lines of geochemical evidence must be considered when depositional paleoenvironments of source rocks are reconstructed based on the H isotopic composition of individual n-alkanes.  相似文献   

9.
《Applied Geochemistry》2004,19(1):55-72
Bulk and molecular stable C isotopic compositions and biomarker distributions provide evidence for a diverse community of algal and bacterial organisms in the sedimentary organic matter of a carbonate section throughout the Permian–Triassic (P/Tr) transition at the Idrijca Valley, Western Slovenia. The input of algae and bacteria in all the Upper Permian and Lower Scythian samples is represented by the predominance of C15–C22 n-alkanes, odd C-number alkylcyclohexanes, C27 steranes and substantial contents of C21–C30 acyclic isoprenoids. The occurrence of odd long-chain n-alkanes (C22–C30) and C29 steranes in all the samples indicate a contribution of continental material. The decrease of Corg and Ccarb contents, increase of Rock-Eval oxygen indices, and 13C-enrichment of the kerogen suggest a decrease in anoxia of the uppermost Permian bottom water. The predominance of odd C-number alkylcycloalkanes, C27 steranes, and C17 n-alkanes with δ13C values ∼−30‰, and 13C-enrichment of the kerogens in the lowermost Scythian samples are evidence of greater algal productivity. This increased productivity was probably sustained by a high nutrient availability and changes of dissolved CO2 speciation associated to the earliest Triassic transgression. A decrease of Corg content in the uppermost Scythian samples, associated to a 13C-depletetion in the carbonates (up to 4‰) and individual n-alkanes (up to 3.4‰) compared to the Upper Permian samples, indicate lowering of the primary productivity (algae, cyanobacteria) and/or higher degradation of the organic matter.  相似文献   

10.
Degradation patterns of sedimentary algal lipids were tracked with time under variable redox treatments designed to mimic conditions in organic-rich, bioturbated deposits. Uniformly 13C-labeled algae were mixed with Long Island Sound surface muddy sediments and exposed to different redox regimes, including continuously oxic and anoxic, and oscillated oxic: anoxic conditions. Concentrations of several 13C-labeled algal fatty acids (16:1, 16:0 and 18:1), phytol and an alkene were measured serially. Results showed a large difference (∼10×) in first-order degradation rate constants of cell-associated lipids between continuously oxic and anoxic conditions. Exposure to oxic conditions increased the degradation of cell-associated lipids, and degradation rate constants were positive functions (linear or nonlinear) of the fraction of time sediments were oxic. Production of two new 13C-labeled compounds (iso-15:0 fatty acid and hexadecanol) further indicated that redox conditions and oxic: anoxic oscillations strongly affect microbial degradation of algal lipids and net synthesis of bacterial biomass. Production of 13C-labeled iso-15:0 fatty acid (a bacterial biomarker) was inversely proportional to the fraction of time sediments were oxic, rapidly decreasing after 10 days of incubation under oxic and frequently oscillated conditions. Turnover of bacterial biomass was faster under continuously or occasionally oxic conditions than under continuously anoxic conditions. 13C-labeled hexadecanol, an intermediate degradation product, accumulated under anoxic conditions but not under oxic or periodically oxic conditions. The frequency of oxic: anoxic oscillation clearly alters both the rate and pathways of lipid degradation in surficial sediments. Terminal degradation efficiency and lipid products from degradation of algal material depend on specific patterns of redox fluctuations.  相似文献   

11.
《Organic Geochemistry》1999,30(2-3):133-146
Lake George, located in the St. Marys River, has been heavily impacted by human-induced environmental changes over the past century. The effects of human impacts starting in the late nineteenth century and of natural, gradual diagenesis can be distinguished in the bulk organic matter and molecular contents of the sedimentary record. Organic carbon concentrations increase from 0.5% in sediments deposited 200 years ago to ∼4% in recent sediments. A fourfold increase in organic carbon mass accumulation rates accompanies the change in concentrations. Elevated C/N ratios in near-modern sediments indicate that increased delivery of land-derived organic matter has been responsible for much of the recent increases in sedimentary organic carbon. Organic δ13C and δ15N values change significantly and coincidentally with the environmental changes, reflecting depressed algal productivity since the introduction of industrial effluents to the aquatic system, increased delivery of land-derived organic matter and some impacts of acid rain. Increases in microbial and petroleum hydrocarbon contributions occur in sediments deposited since 1900. Fatty acid distributions provide evidence of substantial microbial reworking of organic matter throughout the sedimentary record.  相似文献   

12.
The Miran oilfield is one of the new oil fields in Kurdistan region, northern Iraq, located in the Sulaimani Governorate. Twelve Cuttings samples from the Upper Jurassic Naokelekan and Barsarin formations in well Miran-2 were selected for detailed organic geochemical investigations. All the samples were subjected to bitumen extraction in order to study any biomarkers present using gas chromatography-mass spectrometry. The dominance of low-molecular-weight n-alkanes and other calculated parameters indicate a marine source for the organic matter derived from planktonic algal and bacterial precursors deposited under anoxic conditions. The isoprenoids/n-alkanes ratios indicate type II and mixed II/III kerogen for both formations. The type II/III kerogen is characteristic of transitional environment under anoxic to dysoxic conditions as also indicated by the homohopane index for studied samples. More argillaceous carbonate rocks were deposited when reducing conditions were prevalent. Medium to high gammacerane index values in the rock extracts probably indicate a stratified water column during deposition of both formations. The studied samples from both formations have entered peak oil window maturity as reflected from the biomarker ratios from both aliphatic and aromatic fractions of the extracts.  相似文献   

13.
Concentration profiles of five C25 and C30 biogenic alkenes in a sediment core collected from the upper anoxic basin of the Pettaquamscutt River have been determined. The five alkenes were identified usin gas chromatography/mass spectrometry as three isomeric C25 dienes, a C25 triene and a bicyclic C30 diene. All five compounds exhibit subsurface concentration maxima, thought to result from either preservation of a past increase in alkene production or a current bacterial in situ production at depth. Similarities exist in the concentrations of two alkenes common to this core and a core from upper Narragansett Bay, despite significant differences in the origin and content of sedimentary organic matter (as inferred from organic carbon and δ 13C measurements) at each location. These observations support the proposed bacterial in situ synthesis of alkenes. Other alkenes, whose concentration in sediments had been previously correlated with the incidence of marine organic matter, were not detected in the upper basin sediments. Their absence is consistent with the range of organic carbon δ 13C values measured, which indicate that the component originating from marine sources is small. A comparison of organic carbon and δ 13C values in this core with those previously reported from a core collected in an adjoining basin indicate that the sedimentary regimes at the two sites differ despite their close proximity and similar hydrography.  相似文献   

14.
The Holocene successions of numerous shallow lakes located along the Coorong coastal plain in South Australia attest to the impact of rising sea level and changing climate on their depositional environment. Old Man Lake is one of the smallest perennial alkaline lakes in the region. Its succession comprises a basal lagoonal sand rich in humic organic matter (OM) overlain by a 3.7 m thick upward shoaling lacustrine mudstone. The latter features three discrete sapropel units deposited between 3270 and 4910 cal yr BP, a time of increasing aridity throughout southeastern Australia. A core taken from the lake’s eastern margin yielded sedimentological, mineralogical, geochronological and micropaleontological data. Coring at five other sites across the lake provided sections of the humic and sapropelic facies (n = 20) for total organic carbon and Rock–Eval analysis; isotopic characterization of their micritic carbonate (δ13Ccarb, δ18Ocarb) and co-existing OM (δ13Corg); and GC–MS and GC–irMS analysis of their free aliphatic hydrocarbons. For each ‘sapropel event’ high productivity of diatoms and green algae was the principal driver of the accumulation and preservation of OM in such high concentrations. The precursor algal blooms were likely triggered by the influx of fresh water following winter rainfall. The combination of kerogen hydrogen index and δ13Ccarbδ13Corg, previously employed to track secular changes in algal productivity and organic preservation, proved useful in identifying synchronous geographic differences in these processes across the lake. Highly branched isoprenoids (HBI: C25:1  C20:0) are prominent components of the aliphatic hydrocarbons in the sapropels, confirming the significant contribution of diatoms to their OM. The C isotopic signatures of the principal C25:1 HBI isomer and the co-occurring C23–C31 odd carbon numbered n-alkanes further document the non-uniformity of biomass preservation within and between the three sapropel units. The evidence from this study suggests that seasonal algal blooms and meromixis, although not necessarily an anoxic hypoliminion, were required for sapropel formation in the Holocene lakes of the Coorong region. Higher resolution sampling, dating and comparative analysis (microfossil, biomarker and isotopic) of these sapropels is required to clarify their potential significance as palaeoclimate proxies.  相似文献   

15.
We have investigated the transfer of oxygen isotope signals of diatomaceous silica (δ18Odiatom) from the epilimnion (0-7 m) through the hypolimnion to the lake bottom (∼20 m) in freshwater Lake Holzmaar, Germany. Sediment-traps were deployed in 2001 at depths of 7 and 16 m to harvest fresh diatoms every 28 days. The 7 m trap collected diatoms from the epilimnion being the main zone of primary production, while the 16 m trap collected material already settled through the hypolimnion. Also a bottom sediment sample was taken containing diatom frustules from approximately the last 25 years. The δ18Odiatom values of the 7 m trap varied from 29.4‰ in spring/autumn to 26.2‰ in summer according to the temperature dependence of oxygen isotope fractionation and represent the initial isotope signal in this study. Remarkably, despite the short settling distance δ18Odiatom values of the 7 and the 16 m trap were identical only during spring and autumn seasons while from April to September δ18Odiatom values of the 16 m trap were roughly ∼1.5‰ enriched in 18O compared to those of the 7 m trap. Isotopic exchange with the isotopically lighter water of the hypolimnion would shift the δ18Odiatom value to lower values during settling from 7 to 16 m excluding this process as a cause for the deviation. Dissolution of opal during settling with intact organic coatings of the diatom cells and near neutral pH of the water should only cause a minor enrichment of the 16 m values. Nevertheless, opal from the bottom sediment was found to be 2.5‰ enriched in 18O compared to the weighted average of the opal from the 7 m trap. Thus, resuspension of bottom material must have contributed to the intermediate δ18Odiatom signal of the 16 m trap during summer. Dissolution experiments allowed further investigation of the cause for the remarkably enriched δ18Odiatom value of the bottom sediment. Experiments with different fresh diatomaceous materials show an increase of opaline 18O at high pH values which is remarkably reduced when organic coatings of the cells still exist or at near neutral pH. In contrast, high pH conditions do not affect the δ18Odiatom values of sub-fossil and even fossil opal. IR analyses show that the 18O enrichment of the sedimentary silica is associated with a decrease in Si-OH groups and the formation of Si-O-Si linkages. This indicates a silica dehydroxylation process as cause for the isotopic enrichment of the bottom sediment. Silica dissolution and dehydroxylation clearly induce a maturation process of the diatom oxygen isotope signal presumably following an exponential behaviour with a rapid initial phase of signal alteration. The dynamics of this process is of particular importance for the quantitative interpretation of sedimentary δ18Odiatom values in terms of palaeothermometry.  相似文献   

16.
Lignin oxidation products and stable carbon isotope distributions are used to investigate the sources, transport, and chemical stability of land-derived organic matter in dated cores of modern sediment from the southern Washington State continental shelf and slope. There is no evidence for significant chemical alteration of lignin compounds in these sediments for time periods of up to 400 yr. Gymnosperm woods and nonwoody angiosperm tissues account for most of the land-derived organic matter in the deposits. These land plant remains have an average δ13C of approximately ?25.5% and are concentrated in a narrow band of silty sediment which extends northward from the Columbia River mouth along the mid-shelf. Marine organic matter having an approximate δ13C of ?21.5%, strongly predominates in most other shelf and slope environments. Net fluxes of land-derived organic matter into the surface 5 cm of the cores vary directly with sediment accumulation rates. Net fluxes of marine organic material into the surface sediments are highest in environments which favor the preservation of organic matter, but correspond to less than 1% of the primary productivity in the overlying waters.  相似文献   

17.
The Maikop Formation, deposited in eastern Azerbaijan during Oligocene and Early Miocene times, contains prolific source rocks with primarily Type II organic matter. Paleontological analyses of dinoflagellate cysts revealed a Lower to Upper Oligocene age for the investigated succession near Angeharan. A major contribution of aquatic organisms (diatoms, green algae, dinoflagellates, chrysophyte algae) and minor inputs from macrophytes and land plants to organic matter accumulation is indicated by n-alkane distribution patterns, composition of steroids and δ13C of hydrocarbon biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria, chemoautotrophic bacteria, as well as green sulfur bacteria. Higher inputs of terrigenous organic matter occurred during deposition of the Upper Oligocene units of the Maikop Formation from Angeharan mountains. The terpenoid hydrocarbon composition argues for angiosperm dominated vegetation in the Shamakhy–Gobustan area.High primary bioproductivity resulted in a stratified water column and the accumulation of organic matter rich sediments in the Lower Oligocene units of the Maikop Formation. Organic carbon accumulation during this period occurred in a permanently (salinity-) stratified, mesohaline environment with free H2S in the water column. This is indicated by low pristane/phytane ratios of all sediments (varying from 0.37–0.69), lower methylated-(trimethyltridecyl)chromans ratio in the lower units and their higher contents of aryl isoprenoids and highly branched isoprenoid thiophenes. Subsequently, the depositional environment changed to normal marine conditions with oxygen deficient bottom water. The retreat of the chemocline towards the sediment–water interface and enhanced oxic respiration of OM during deposition of the Upper Oligocene Maikop sediments is proposed.Parallel depth trends in δ13C of total OM, n-alkanes, isoprenoids and steranes argue for changes in the regional carbon cycle, associated with the changing environmental conditions. Increased remineralisation of OM in a more oxygenated water column is suggested to result in low TOC and hydrocarbon contents, as well as 15N enriched total nitrogen of the Upper Oligocene units.  相似文献   

18.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

19.
《Organic Geochemistry》1999,30(2-3):161-188
Organic-rich source rocks have generally been attributed to enhanced preservation of organic matter under anoxic bottom waters. Here, geochemical analysis of kerogen and whole rock samples of organic-rich (lithofacies B1) and organic-lean (lithofacies B2) laminated mudrocks of the Devonian–Carboniferous Exshaw Formation, Alberta, highlight the importance of primary production in governing the quantity and quality of organic matter. Lower Si/Al, K/Al, Ti/Al and quartz/clay ratios in lithofacies B2, similar maceral types and the laminated fabric of the two lithofacies indicate that the quality and quantity of organic matter are not related to grain size, redox or organic matter source changes. High Total Organic Carbon (TOC) and Hydrogen Index (HI), low Oxidation Index (Ox.I. ratio of oxygen functional groups to aliphatic groups derived by FTIR), lighter δ15Ntot and heavier δ13Corg isotopes indicate that kerogen of lithofacies B1 accumulated during periods of high organic-carbon production and delivery of relatively fresh, labile, well-preserved organic matter to the sea floor. In contrast, low TOC, HI, high Ox.I., heavier δ15Ntot and lighter δ13Corg isotopes indicate low primary productivity and delivery, high recycling and poor preservation of organic matter during accumulation of lithofacies B2.  相似文献   

20.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号