首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Environmental geochemistry has attracted increasing interest during the last decade. In Sweden, geochemical mapping is carried out with methods that allow the data to be used in environmental research, including sampling plant roots and mosses from streams, soils and bedrock. These three sample types form an integrated strategy in environmental research, as well as in geochemical exploration. However, one problem that becomes prominent in geochemical mapping is to distinguish the signals derived from natural sources from those derived from anthropogenic sources. So far, this has mostly been done by using different types of samples, for example, different soil horizons. This is both expensive and time-consuming.We are currently developing alternative statistical solutions to this problem. The method used here is PLSR (partial least squares regression analysis). In this paper, we present an initial discussion on the applicability of PLSR in differentiating anthropogenic anomalies from natural contents.PLSR performs a simultaneous, interdependent principal component analysis decomposition in both X- and Y-matrices, in such a way that the information in the Y-matrix is used directly as a guide for optimal decomposition of the X-matrix. PLSR thus performs a generalized multivariate regression of Y on X overcoming the multicollinearity problem of correlated X-variables. The advantage of PLSR is that it gives optimal prediction ability in a strict statistical sense.Bedrock geochemistry from different lithologies in the mapping area in southern Sweden (Y-matrix) is analyzed together with stream or soil data (X-matrix). By modelling the PLS-regression between these two data sets, separate multivariate geochemical models based on the different bedrock types were developed. This step is called the training or modelling stage of the multivariate calibration. These calibrated models are subsequently used for predicting new (X) geochemical samples and estimating the corresponding Y-variable values. Information is obtained on how much of the metal contents in each new geochemical sample correlate with the different modelled bedrock types.By computing the appropriate X-residuals, we obtain information on the anthropogenic impact that is also carried by these new samples. In this way, it is possible from one single geochemical survey to derive both conventional geochemical background data and anthropogenic data, both of which can be readily displayed as maps.The present study concerns development of data analysis methods. Examples of the applications of the methodology are presented using Pb and U. The results show the share of these contents in different sampling media that is derived from bedrock on the one hand, and from anthropogenic sources, on the other.  相似文献   

2.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

3.
Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m?3 and the lowest 6.1 ± 3.9 ng·m?3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m?3 and the minimum average 55.9 pg·m?3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m?3 was measured at GPP, and the lowest level of 20.5 pg·m?3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM.  相似文献   

4.
A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample (206Pb/207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10-4 and 8.5 ± 1.8 × 10-3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953.The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m2/yr and 1.34 ± 0.29 μg/m2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m2/yr. The rate of atmospheric Hg accumulation in 1998 (16 μg/m2/yr) is comparable to the values recently obtained by atmospheric transport modeling for Denmark, the Faroe Islands, and Greenland.  相似文献   

5.
6.
In order to study the lithospheric structure in Romania a 450 km long WNW–ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300–1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0–5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of sedimentary rocks. The North Dobrogea crust reaches a thickness of about 44 km and is probably composed of thick Eastern European crust overthrusted by a thin 1–2 km thick wedge of the North Dobrogea Orogen.  相似文献   

7.
8.
Methane (CH4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. We have discovered a new extreme in a natural gas seep with values of deuterium concentrations, δDCH4, up to + 124‰ that far exceed those reported for any terrestrial gas. The gas, seeping from the small Homorod mud volcano in Transylvania (Romania), also has extremely high concentrations of nitrogen (> 92 vol.%) and helium (up to 1.4 vol.%). Carbon isotopes in CH4, C2H6 and CO2, and nitrogen isotopes in N2 indicate a primary organic sedimentary origin for the gas (a minor mantle component is suggested by the 3He/4He ratio, R/Ra ~ 0.39). Both thermogenic gas formation modeling and Rayleigh fractionation modeling suggest that the extreme deuterium enrichment could be explained by an oxidation process characterised by a δDCH4 and δ13CCH4 enrichment ratio (ΔH/ΔC) of about 20, and may be accounted for by abiogenic oxidation mediated by metal oxides. All favourable conditions for such a process exist in the Homorod area, where increased heat flow during Pliocene–Quaternary volcanism may have played a key role. Finally we observed rapid variations (within 1 h) in C and H isotope ratios of CH4, and in the H2S concentrations which are likely caused by mixing of the deep oxidized CH4–N2–H2S–He rich gas with a microbial methane generated in the mud pool of one of the seeps.We hypothesize that the unusual features of Homorod gas can be the result of a rare combination of factors induced by the proximity of sedimentary organic matter, mafic, metal-rich volcanic rocks and salt diapirs, leading to the following processes: a) primary thermogenic generation of gas at temperatures between 130 and 175 °C; b) secondary alteration through abiogenic oxidation, likely triggered by the Neogene–Quaternary volcanism of the eastern Transylvanian margin; and c) mixing at the surface with microbial methane that formed through fermentation in the mud volcano water pool. The Homorod gas seep is a rare example that demonstrates how post-genetic processes can produce extreme gas isotope signatures (thus far only theorized), and that extremely positive δDCH4 values cannot be used to unambiguously distinguish between biotic and abiotic origin.  相似文献   

9.
Complex investigations of recent and Drevnechernomorian (ancient Black Sea) sediments from the outer shelf, continental slope, and deep-water basin of the Russian Black Sea sector have been carried out using samples collected during cruise of the R/V Professor Shtokman organized by the Institute of Oceanology of the Russian Academy of Sciences (March 2009) and expedition of “YUZHMORGEO” (summer 2006). Rates of the main anaerobic processes during diagenesis (sulfate reduction, dark CO2 fixation, methanogenesis, and methane oxidation) were studied for the first time in sediment cores of the studied area. Two peaks in the rate of microbial processes and two sources of these processes were identified: the upper peak near the water-sediment contact is related to the solar energy (OM substrate of the water column) and the lower peak at the base of the Drevnechernomorian sediments with high(>1000 μM) methane concentration related to the energy of anaerobic methane oxidation. The neogenic labile OM formed during this process is utilized by other groups of microorganisms. According to experimental data, the daily rate of anaerobic methane oxidation is many times higher than that of methanogenesis, which unambiguously indicates the migration nature of the main part of methane.  相似文献   

10.
International Journal of Earth Sciences - Two Gondwana-derived Paleozoic belts rim the Archean/Paleoproterozoic nucleus of the East European Platform in the Black Sea region. In the north is a belt...  相似文献   

11.
Coal seam gas (CSG) has the potential to be a low-carbon transition fuel, but CSG fields may be a source of fugitive emissions of methane (CH4). We use mobile cavity ring-down spectroscopy (CRDS) measurements to attribute CH4 concentrations to sources in southeastern Australia including CSG fields. Our study shows higher CH4 concentration values associated with both natural and anthropogenic sources other than CSG. These include urban landfills (>320 ppm) and urban infrastructure (>17 ppm), agricultural activities (>20 ppm) and open-pit coal mines (>30 ppm). We confirm reports of increased concentration of CH4 downwind of some parts of CSG fields (<5 ppm), but elevated concentrations are not endemic and could not be separated from contributions of natural geological seeps (>16 ppm) that form part of the background levels. While CRDS allows direct determination of CH4 sources, repeat measurements show the strong influence of atmospheric conditions on concentration and highlight the need for methods that quantify flux.  相似文献   

12.
13.
Stable Pb isotope profiles in dated lake sediment cores were used to gauge the relative amounts and possible sources of anthropogenic Pb deposited from the atmosphere in different regions of the Canadian Arctic. A distinct north-south difference was found. In four High Arctic lakes (i.e., north of 66°N) in this study, recent Pb isotopic shifts or concentration increases attributable to anthropogenic Pb were negligible. The maximum possible contribution from anthropogenic Pb was 0 to 19% of acid-leachable Pb in the 1980s or 1990s. In contrast, two lakes in the Hudson Bay region displayed significantly lower Pb isotope ratios and threefold to fivefold increases of Pb concentrations in modern sediments, corresponding to anthropogenic Pb inputs of at least 72 to 91% of leachable Pb. Eurasian urban and industrial Pb is known to dominate the High Arctic atmosphere. A possible explanation for its negligible influence on northern lake sediments is that atmospheric Pb deposition at northern latitudes is reduced compared with southern regions and is small compared to local geological inputs. 210Pb deposition declines with increasing latitude, apparently because of declining precipitation rates; stable Pb deposition may be similarly affected. Meteorological considerations and variations in the post-1900 Pb isotopic trajectories indicated that the predominant anthropogenic Pb source region in NW Hudson Bay was Eurasia, while in SE Hudson Bay, it was Canada and the United States, with a minor Eurasian component.  相似文献   

14.
An update on the natural sources and sinks of atmospheric mercury   总被引:1,自引:0,他引:1  
This paper summarizes recent advances in the understanding of the exchange of Hg between the atmosphere and natural terrestrial surfaces including substrates (soil, rocks, litter-covered surfaces and weathered lithological material) and foliage. Terrestrial landscapes may act as new sources of atmospheric Hg, and as repositories or temporary residences for anthropogenically and naturally derived atmospheric Hg. The role of terrestrial surfaces as sources and sinks of atmospheric Hg must be quantified in order to develop regional and global Hg mass balances, and to assess the efficacy of regulatory controls on anthropogenic point sources in reduction of human Hg exposure.  相似文献   

15.
Bacteriohopanepolyols (BHPs) are lipid constituents of many bacterial groups. Geohopanoids, the diagenetic products, are therefore ubiquitous in organic matter of the geosphere. To examine the potential of BHPs as environmental markers in marine sediments, we investigated a Holocene sediment core from the Black Sea. The concentrations of BHPs mirror the environmental shift from a well-mixed lake to a stratified marine environment by a strong and gradual increase from low values (∼30 μg g−1 TOC) in the oldest sediments to ∼170 μg g−1 TOC in sediments representing the onset of a permanently anoxic water body at about 7500 years before present (BP). This increase in BHP concentrations was most likely caused by a strong increase in bacterioplanktonic paleoproductivity brought about by several ingressions of Mediterranean Sea waters at the end of the lacustrine stage (∼9500 years BP). δ15N values coevally decreasing with increasing BHP concentrations may indicate a shift from a phosphorus- to a nitrogen-limited setting supporting growth of N2-fixing, BHP-producing bacteria. In sediments of the last ∼3000 years BHP concentrations have remained relatively stable at about 50 μg g−1 TOC.The distributions of major BHPs did not change significantly during the shift from lacustrine (or oligohaline) to marine conditions. Tetrafunctionalized BHPs prevailed throughout the entire sediment core, with the common bacteriohopanetetrol and 35-aminobacteriohopanetriol and the rare 35-aminobacteriohopenetriol, so far only known from a purple non-sulfur α-proteobacterium, being the main components. Other BHPs specific to cyanobacteria and pelagic methanotrophic bacteria were also found but only in much smaller amounts.Our results demonstrate that BHPs from microorganisms living in deeper biogeochemical zones of marine water columns are underrepresented or even absent in the sediment compared to the BHPs of bacteria present in the euphotic zone. Obviously, the assemblage of molecular fossils in the sediments does not represent an integrated image of the entire community living in the water column. Remnants of organisms living in zones where effective transport mechanisms - such as the fecal pellet express - exist are accumulated while those of others are underrepresented. Our work shows a high stability of BHPs over geological time scales. Largely uniform distributions and only minor changes in structures like an increasing prevalence of saturated over unsaturated BHPs with time were observed. Consequently, sedimentary BHP distributions are less suitable as markers for in situ living bacteria but are useful for paleoreconstructions of bacterioplanktonic communities and productivity changes.  相似文献   

16.
Anthropogenic S emissions in the Athabasca oil sands region (AOSR) in Alberta, Canada, affect SO4 deposition in close vicinity of industrial emitters. Between May 2008 and May 2009, SO4-S deposition was monitored using open field bulk collectors at 15 sites and throughfall collectors at 14 sites at distances between 3 and 113 km from one of the major emission stacks in the AOSR. At forested plots >90 km from the operations, SO4 deposition was ∼1.4 kg SO4-S ha−1 yr−1 for bulk deposition and ∼3.3 kg SO4-S ha−1 yr−1 for throughfall deposition. Throughfall SO4 deposition rates in the AOSR exceeded bulk deposition rates at all sites by a factor of 2–3, indicating significant inputs of dry deposition especially under forest canopies. Both bulk and throughfall SO4 deposition rates were elevated within 29 km distance of the industrial operations with deposition rates as high as 11.7 kg SO4-S ha−1 yr−1 for bulk deposition and 39.2 kg SO4-S ha−1 yr−1 for throughfall at industrial sites. Sulfur isotope ratio measurements of atmospheric SO4 deposited in the AOSR revealed that at a few selected locations 34S-depleted SO4, likely derived from H2S emissions from tailing ponds contributes to local atmospheric SO4 deposition. In general, however, δ34S values of SO4 deposition at distant forested plots (>74 km) with low deposition rates were not isotopically different from δ34S values at sites with high deposition rates in the AOSR and are, therefore, not suitable to determine industrial S contributions. However, O isotope ratios of atmospheric SO4 in bulk and throughfall deposition in the AOSR showed a distinct trend of decreasing δ18O-SO4 values with increasing SO4 deposition rates allowing quantification of industrial contributions to atmospheric SO4 deposition. Two-end-member mixing calculations revealed that open field bulk SO4 deposition especially at industrial sites in close proximity (<29 km) to the operations is significantly (17–59%) affected by industrial S emissions and that throughfall generally contained 49–100% SO4 of industrial origin. Hence, it is suggested that δ18O values of SO4 may constitute a suitable tracer for quantifying industrial contributions to atmospheric SO4 deposition in the AOSR.  相似文献   

17.
The objectives of this study are as follows: (a) an assessment of the geochemical background signature of the Drava Valley before the industrial revolution; (b) an evaluation of anthropogenic geochemical influences on the alluvial plains and river terraces in the valley; and (c) a determination of the spatial distribution of trace elements in the alluvial soils of the Drava River downstream of the Austrian–Slovenian border to the confluence of Mura and Drava Rivers.  相似文献   

18.
19.
Herein, lipid biomarker analysis is applied to surface sediments from the southeastern Niger Delta region for the quantitative determination of aliphatic lipids, steroids and triterpenoids in order to differentiate between natural (autochthonous vs. allochthonous) and anthropogenic organic matter (OM) inputs to this deltaic environment. This ecosystem, composed of the Cross, Great Kwa and Calabar Rivers, is receiving new attention due to increased human and industrial development activities and the potential effects of these activities impacting its environmental health. While the presence of low molecular weight n-alkanes (<C22) and the fossil biomarkers pristane and phytane in all samples, are indicative of a minor petroleum related input, the total extractable organic component of the surface sediments of these rivers remains predominantly of a natural origin as characterized by the variety and predominance of lipid classes that are mainly derived from the epicuticular waxes of vascular plants and include n-alkanes, n-alkanols, n-alkan-2-ones, n-alkanoic acids, steroids and triterpenoids. In addition, recent OM inputs from microorganisms are indicated by the presence of lower molecular weight n-alkanoic acids (Cmax = 16), while the major triterpenoids of the sediments, taraxerol and friedelin, and the major sterol, sitosterol, indicate recent OM inputs from vascular plants. Plankton-derived sterols, such as fucosterol and dinosterol, are also found in sediments from the Cross and Great Kwa Rivers and likely originate from autochthonous primary productivity. Furthermore, the coprosterols coprostanol and 24-ethylcoprostanol are present in most samples and indicate measurable anthropogenic contributions from domestic untreated sewage inputs and agricultural run-off, respectively. Of the three rivers studied, the Cross River system was excessively influenced by human and industrial development activities, including drivers such as urbanization and population center growth, land-use change to support agricultural production and animal husbandry, and petroleum exploration and production. These influences were found to be regionally specific as controlled by point sources of pollution based on the relative distributions measured and on the fact that the molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.  相似文献   

20.
We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to −67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C15) were not strongly isotopically depleted (e.g., −32 to −25‰), although anteiso-C15 was 5‰ more depleted in 13C than iso-C15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and helps explain the absence of AOM-derived biomarkers in sediments deposited during past periods of elevated levels of methane in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号