首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

2.
Electric potentials of the (0 0 1) surface of hematite were measured as a function of pH and ionic strength in solutions of sodium nitrate and oxalic acid using the single-crystal electrode approach. The surface is predominantly charge-neutral in the pH 4-14 range, and develops a positive surface potential below pH 4 due to protonation of μ-OH0 sites (pK1,1,0,int = −1.32). This site is resilient to deprotonation up to at least pH 14 (−pK−1,1,0,int ? 19). The associated Stern layer capacitance of 0.31-0.73 F/m2 is smaller than typical values of powders, and possibly arises from a lower degree of surface solvation. Acid-promoted dissolution under elevated concentrations of HNO3 etches the (0 0 1) surface, yielding a convoluted surface populated by sites. The resulting surface potential was therefore larger under these conditions than in the absence of dissolution. Oxalate ions also promoted (0 0 1) dissolution. Associated electric potentials were strongly negative, with values as large as −0.5 V, possibly from metal-bonded interactions with oxalate. The hematite surface can also acquire negative potentials in the pH 7-11 range due to surface complexation and/or precipitation of iron species (0.0038 Fe/nm2) produced from acidic conditions. Oxalate-bearing systems also result in negative potentials in the same pH range, and may include ferric-oxalate surface complexes and/or surface precipitates. All measurements can be modeled by a thermodynamic model that can be used to predict inner-Helmholtz potentials of hematite surfaces.  相似文献   

3.
This work reports the synthesis of ferri-clinoholmquistite, nominally Li2(Mg3Fe3+2)Si8O22(OH)2, at varying fO2 conditions. Amphibole compositions were characterized by X-ray (powder and single-crystal) diffraction, microchemical (EMPA) and spectroscopic (FTIR, Mössbauer and Raman) techniques. Under reducing conditions ( NNO+1, where NNO = Nickel–Nickel oxide buffer), the amphibole yield is very high (>90%), but its composition, and in particular the FeO/Fe2O3 ratio, departs significantly from the nominal one. Under oxidizing conditions ( NNO+1.5), the amphibole yield is much lower (<60%, with Li-pyroxene abundant), but its composition is close to the ideal stoichiometry. The exchange vector of relevance for the studied system is M2(Mg,Fe2+) M4(Mg,Fe2+) M2Fe3+–1 M4Li–1, which is still rather unexplored in natural systems. Amphibole crystals of suitable size for structure refinement were obtained only at 800 °C, 0.4 GPa and NNO conditions (sample 152), and have C2/m symmetry. The X-ray powder patterns for all other samples were indexed in the same symmetry; the amphibole closest to ideal composition has a = 9.428(1) Å, b = 17.878(3) Å, c = 5.282(1) Å, = 102.06(2)°, V = 870.8(3) Å3. Mössbauer spectra show that Fe3+ is strongly ordered at M2 in all samples, whereas Fe2+ is disordered over the B and C sites. FTIR analysis shows that the amount of CFe2+ increases for increasingly reducing conditions. FTIR data also provide strong evidence for slight but significant amounts of Li at the A sites.  相似文献   

4.
The pressure-volume-temperature-composition (PVTX) properties of H2O-CH4 were determined from the bubble point curve to 500 °C and 3 kbar for compositions ?4 mol.% CH4 using the synthetic fluid inclusion technique. H2O-CH4 inclusions were produced by loading known amounts of Al3C4 and H2O into platinum capsules along with pre-fractured and inclusion-free quartz cores. During heating the Al3C4 and H2O react to produce CH4, and the H2O-CH4 homogeneous mixture was trapped as inclusions during fracture healing at elevated temperature and pressure. The composition of the fluid in the inclusion was confirmed using the weight loss technique after the experiment and by Raman spectroscopic analysis of the inclusions.Homogenization temperatures of the inclusions were determined and the results were used to construct iso-Th lines, defined as a line connecting the formation temperature and pressure with the homogenization temperature and pressure. The pressure in the inclusion at the homogenization temperature was calculated from the Duan equation of state (EOS). The slope (ΔPT) of each iso-Th line was calculated and the results fitted to a polynomial equation using step-wise multiple regression analysis to estimate the slope of the iso-Th line as a function of the homogenization temperature and composition according to:
PT)=a+b·m+c·m4+d·(Th)2+e·m·Th+f·m·(Th)4,  相似文献   

5.
New minerals, shlykovite and cryptophyllite, hydrous Ca and K phyllosilicates, have been identified in hyperalkaline pegmatite at Mount Rasvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. They are the products of low-temperature hydrothermal activity and are associated with aegirine, potassium feldspar, nepheline, lamprophyllite, eudialyte, lomonosovite, lovozerite, tisinalite, shcherbakovite, shafranovskite, ershovite, and megacyclite. Shlykovite occurs as lamellae up to 0.02 × 0.02 × 0.5 mm in size or fibers up to 0.5 mm in length usually combined in aggregates up to 3 mm in size, crusts, and parallel-columnar veinlets. Cryptophyllite occurs as lamellae up to 0.02 × 0.1 × 0.2 mm in size intergrown with shlykovite being oriented parallel to {001} or chaotically arranged. Separate crystals of the new minerals are transparent and colorless; the aggregates are beige, brownish, light cream, and pale yellowish-grayish. The cleavage is parallel to (001) perfect. The Mohs hardness of shlykovite is 2.5–3. The calculated densities of shlykovite and cryptophyllite are 2.444 and 2.185 g/cm3, respectively. Both minerals are biaxial; shlykovite: 2V meas = −60(20)°; cryptophyllite: 2V meas > 70°. The refractive indices are: shlykovite: α = 1.500(3), β = 1.509(2), γ = 1.515(2); cryptophyllite: α = 1.520(2), β = 1.523(2), γ = 1.527(2). The chemical composition of shlykovite determined by an electron microprobe (H2O determined from total deficiency) is as follows, wt %: 0.68 Na2O, 11.03 K2O, 13.70 CaO, 59.86 SiO2, 14.73 H2O; the total is 100.00. The empirical formula calculated on the basis of 13 O atoms (OH/H2O calculated from the charge balance) is (K0.96Na0.09)Σ1.05Ca1.00Si4.07O9.32(OH)0.68 · 3H2O. The idealized formula is KCa[Si4O9(OH)] · 3H2O. The chemical composition of cryptophyllite determined by an electron microprobe (H2O determined from the total deficiency) is as follows, wt %: 1.12 Na2O, 17.73 K2O, 11.59 CaO, 0.08 Al2O3, 50.24 SiO2, 19.24 H2O, the total is 100.00. The empirical formula calculated on the basis of (Si,Al)4(O,OH)10 (OH/H2O calculated from the charge balance) is (K1.80Na0.17)Σ1.97Ca0.99Al0.01Si3.99O9.94(OH)0.06 · 5.07H2O. The idealized formula is K2Ca[Si4O10] · 5H2O. The crystal structures of both minerals were solved on single crystals using synchrotron radiation. Shlykovite is monoclinic; the space group is P21/n; a = 6.4897(4), b = 6.9969(5), c = 26.714(2)?, β = 94.597(8)°, V = 1209.12(15)?3, Z = 4. Cryptophyllite is monoclinic; the space group is P21/n; a = 6.4934(14), b = 6.9919(5), c = 32.087(3)?, β = 94.680(12)°, V= 1451.9(4)?, Z = 4. The strongest lines of the X-ray powder patterns (d, ?-I, [hkl] are: shlykovite 13.33–100[002], 6.67–76[004], 6.47–55[100], 3.469–45[021], 3.068–57[$ \bar 1 $ \bar 1 21], 3.042–45[121], 2.945–62[ 23], 2.912–90[025, 12, 211]; cryptophyllite 16.01–100[002], 7.98–24[004], 6.24–48[101], 3.228–22[$ \bar 1 $ \bar 1 09], 3.197–27[0.0.10], 2.995–47[122], 2.903–84[123, 204, $ \bar 1 $ \bar 1 24, 211], 2.623–20[028, 08, 126]. Shlykovite and cryptophyllite are members of new related structural types. Their structures are based on a two-layer packet consisting of tetrahedral Si layers linked with octahedral Ca chains. Mountainite, shlykovite and cryptophyllite could be combined into the mountainite structural family. Shlykovite is named in memory of Russian geologist V. G. Shlykov (1941–2007); the name cryptophyllite is from the Greek words meaning concealed and leaf that allude to its layered structure (phyllosilicate) in combination with a lamellar habit and intimate intergrowths with visually indistinguishable shlykovite. Type specimens of the minerals are deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

6.
The 10?-phase, Mg3Si4O10(OH)2 · nH2O, where n = 0.65÷2, belongs to the group of dense hydrous magnesium silicates (DHMS), which were produced in experiments and are regarded as hypothetical mineral carriers for H2O in the mantle. However, DHMS were almost never observed in nature. The only exception is the finding of the 10?-phase as nanoinclusions in olivines from mantle nodules in kimberlites. The inclusions with sizes of a few ten nanometers have a pseudohexagonal habit and are characterized by the presence of voids free of solids. The 10?-phase fills the equatorial parts of the inclusions, and, in the majority of inclusions, it is replaced by the low-pressure serpentine + talc assemblage. Based on the analysis of electron microscope images, a model was proposed for the solid-state formation of inclusions, the precursory material of which was transformed to the 10?-phase with the liberation of a water fluid. According to this model, the formation of hydrous nanoinclusions and their subsequent autoserpentinization occurred without the influx of H2O from the external medium through the mobilization of intrinsic hydroxyl-bearing point defects trapped during olivine crystallization. The subsequent autoserpentinization of the inclusions occurred during decompression owing to interaction between the inclusion material and the host olivine matrix. The process was accompanied by the partial exhaustion of the fluid phase and the replacement 10?-phase + H2O = Serp + Tc. The criterion for the credibility of the model is the conservation of the volume of material during the reaction at P = const and T = const. Original Russian Text ? N.R. Khisina, R. Wirth, 2008, published in Geokhimiya, 2008, No. 4, pp. 355–363.  相似文献   

7.
The reaction path in the MgO–CO2–H2O system at ambient temperatures and atmospheric CO2 partial pressure(s), especially in high-ionic-strength brines, is of both geological interest and practical significance. Its practical importance lies mainly in the field of nuclear waste isolation. In the USA, industrial-grade MgO, consisting mainly of the mineral periclase, is the only engineered barrier certified by the Environmental Protection Agency (EPA) for emplacement in the Waste Isolation Pilot Plant (WIPP) for defense-related transuranic waste. The German Asse repository will employ a Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite. Therefore, the reaction of periclase or brucite with carbonated brines with high-ionic-strength is an important process likely to occur in nuclear waste repositories in salt formations where bulk MgO or Mg(OH)2 will be employed as an engineered barrier. The reaction path in the system MgO–CO2–H2O in solutions with a wide range of ionic strengths was investigated experimentally in this study. The experimental results at ambient laboratory temperature and ambient laboratory atmospheric CO2 partial pressure demonstrate that hydromagnesite (5424) (Mg5(CO3)4(OH)2 · 4H2O) forms during the carbonation of brucite in a series of solutions with different ionic strengths. In Na–Mg–Cl-dominated brines such as Generic Weep Brine (GWB), a synthetic WIPP Salado Formation brine, Mg chloride hydroxide hydrate (Mg3(OH)5Cl · 4H2O) also forms in addition to hydromagnesite (5424).  相似文献   

8.
This paper presents data on burovaite-Ca, the first Ti-dominant member of the labuntsovite group with a calcium D-octahedron. The idealized formula of burovaite-Ca is (K,Na)4Ca2(Ti,Nb)8[Si4O12]4(OH,O)8 · 12H2O. The mineral has been found in the hydrothermal zone of aegirine-microcline pegmatite located in khibinite at Mt. Khibinpakhkchorr, the Khibiny pluton, Kola Peninsula, Russia. Radiaxial intergrowths of burovaite-Ca and labuntsovite-Mn associated with lemmleynite-Ba, analcime, and apophyllite have been identified in caverns within microcline. The mean composition of the mineral is as follows, wt %: 3.72 Na2O, 2.76 K2O, 4.22 CaO, 0.47 SrO, 0.23 BaO, 0.01 MnO, 0.30 Fe2O3, 0.14 Al2O3, 42.02 SiO2, 17.30 TiO2, 15.21 Nb2O5, 12.60 H2O (measured); the total is 98.98. Its empirical formula has been calculated on the basis of [(Si,Al)16O48]: {(Na3.10K1.07Ca0.37Sr0.04Ba0.04)4.62}(Ca1.28Zn0.01)1.29(Ti4.97Nb2.56Fe0.08Ta0.02)7.63(Si15.93Al0.07)16O48(OH6.70O0.93)7.63 · 12H2O. The strongest lines in the X-ray powder diffraction pattern of burovaite-Ca (I-d ?] are as follows: 70–7.08, 40–6.39, 40–4.97, 30–3.92, 40–3.57, 100–3.25, 70–3.11, 50–2.61, 70–2.49, 40–2.15, 50–2.05, 70–1.712, 70–1.577, and 70–1.444. The structure of burovaite-Ca was solved by A.A. Zolotarev, Jr. The mineral is monoclinic, space group C2/m. The unit-cell dimensions are a = 14.529(3), b = 14.203(3), c = 7.899(1), β = 117.37(1)°, V = 1447.57 ?3. Burovaite-Ca is an isostructural Ti-dominant analogue of karupm?llerite-Ca and gjerdingenite-Ca. Two stages of mineral formation—pegmatite proper and hydrothermal—have been recognized in the host pegmatite. The hydrothermal stage included K-Ba-Na, Na-K-Ca, and Na-Sr substages. Burovaite-Ca is related to the intermediate Na-K-Ca substage. At the first substage, labuntsovite-Mn and lemmleynite-Ba were formed, and tsepinite-Na, paratsepinite-Nd, and tsepinite-Sr were formed at the final substage. Thus, the sequence of crystallization of labuntsovite-group minerals is characterized by the replacement of the potassium regime by the sodium regime of alkaline solutions in the evolved host pegmatite.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号