首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High concentrations of geogenic As in the groundwaters of south and SE Asia, which are used as drinking waters, are causing severe health impacts to the exposed human populations. It is widely accepted that As mobilisation from sediments into these shallow reducing groundwaters requires active metal-reducing microbes and electron donors such as organic matter (OM). Although OM in such Holocene aquifers has been characterised, there is a dearth of data on Pleistocene aquifers from the same areas. Reported here are preliminary studies of OM and microbial communities present in two aquifers, one of Pleistocene and one of Holocene age, with contrasting concentrations of As (viz. Pleistocene: low As <10 μg/L; Holocene: high As up to 600 μg/L) from Van Phuc village in the Red River Delta, Vietnam. Results revealed OM inputs from multiple sources, including potential contributions from naturally occurring petroleum seeping into the shallow aquifer sediments from deeper thermally mature source rocks. Although concentrations vary, no noticeable systematic differences in biomarker distribution patterns within the OM were observed between the two sites. Microbial analyses did not show a presence of microbial communities previously associated with As mobilisation. All clone libraries were dominated by α-, β-, and γ-Proteobacteria not known to be able to reduce Fe(III) or sorbed As(V). Furthermore, representatives of the Fe(III)-reducing genus Geobacter could only be detected at very low abundance by PCR, using highly selective 16S rRNA gene primers, supporting the hypothesis that metal reduction is not a dominant in situ process in these sediments. No correlation between As concentration in groundwater and OM composition nor microbial community in the host sediments was found. This suggests that either (i) As is not being significantly mobilised in situ in these sediments, instead As appears to be mobilised elsewhere and transported by groundwater flow to the sites or (ii) sorption/desorption processes, as implicated by geochemical data from the cores, play a critical role in controlling As concentrations at these sites.  相似文献   

2.
Incubation studies were carried out using 5 freshly collected sediments from shallow aquifers of the Hetao Basin, Inner Mongolia. The aquifer sediments covering a range of redox conditions, as indicated by their deep grey to yellow color were mixed with degassed artificial As solution or degassed deionized water at a ratio of solid to water of about 1:10 (wt./wt.). Suspensions which were either amended with glucose or autoclaved, were incubated in parallel with unamended suspensions. Five microcosm cultures of unamended sediments gradually release the equivalent of 0.03–0.30 μg/g As to the dissolved phase. The addition of glucose as a potential electron donor results in a marked stimulation in the mobilization of As (0.71–3.81 μg/g) in the amended incubations for all sediments. The quantity of As released accounts for 60–70% of As bound to Fe/Mn oxides in the original sediments. The microbially mediated mobilization of As with the organic nutrient as an electron donor is strongly associated with the As bound to Fe/Mn oxides, as well as the exchangeable As. During the incubations amended with glucose, 2–4% of the sediment Fe is released. The results suggest that the introduction of labile dissolved organic C into the yellowish sediment aquifers with As-free groundwater would reduce a significant proportion of the Fe(III) oxyhydroxides mediated by anaerobic bacteria respiration and increase groundwater As concentrations.  相似文献   

3.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

4.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   

5.
The present study investigated the spatial and vertical distribution of organic carbon (OC), total nitrogen (TN), total phosphorus (TP) and biogenic silica (BSi) in the sedimentary environments of Asia’s largest brackish water lagoon. Surface and core sediments were collected from various locations of the Chilika lagoon and were analysed for grain-size distribution and major elements in order to understand their distribution and sources. Sand is the dominant fraction followed by silt + clay. Primary production within the lagoon, terrestrial input from river discharge and anthropogenic activities in the vicinity of the lagoon control the distribution of OC, TN, TP and BSi in the surface as well as in the core sediments. Low C/N ratios in the surface sediments (3.49–3.41) and cores (4–11.86) suggest that phytoplankton and macroalgae may be major contributors of organic matter (OM) in the lagoon. BSi is mainly associated with the mud fraction. Core C5 from Balugaon region shows the highest concentration of OC ranging from 0.58–2.34%, especially in the upper 30 cm, due to direct discharge of large amounts of untreated sewage into the lagoon. The study highlights that Chilika is a dynamic ecosystem with a large contribution of OM by autochthonous sources with some input from anthropogenic sources as well.  相似文献   

6.
灌溉等人为活动会造成外源物质的输入,如硝酸盐、有机质等,从而引起浅层地下水环境发生周期性波动。为研究农业灌溉对沉积含水层中碘迁移富集过程的影响,选取代表性富碘沉积物,通过室内实验模拟了灌溉活动外源物质输入条件下,盆地地下水系统中碘迁移释放的(生物)地球化学过程。实验结果表明:厌氧条件下,外源有机质输入可促使微生物利用有机质作为电子供体,还原固相铁矿物相,进而造成搭载于铁氧化物/氢氧化物表面的碘释放,以碘离子形式在地下水中富集;而在NO3-输入情况下,微生物会优先利用NO3-为电子受体,至硝酸盐被全部消耗后,Fe(Ⅲ)可进一步被还原为Fe(Ⅱ)。研究结果表明,人为活动造成浅表环境外源物质的输入可直接影响浅层地下水中碘的迁移释放过程。伊利石黏土矿物吸附的铁氧化物矿物相可能为浅层环境中碘的主要搭载介质,微生物作用下,铁氧化物/氢氧化物的还原溶解是高碘地下水形成的主控因素。  相似文献   

7.
Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg−1, batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of electron donors such as reactive dissolved organic C.  相似文献   

8.
Mineral assemblages (heavy and light fractions) and sedimentological characteristics of the Quaternary alluvial aquifers were examined in the central Bengal Basin where As concentrations in groundwater are highly variable in space but generally decrease downward. Chemical compositions of sediment samples from two vertical core profiles (2-150 m below ground level, bgl) were analyzed along with groundwater in moderately As-enriched aquifers in central Bangladesh (Manikganj district), and the As mobilization process in the alluvial aquifer is described. Heavy minerals such as biotite, magnetite, amphibole, apatite and authigenic goethite are abundant at shallow (<100 m below ground level (mbgl)) depths but less abundant at greater depths. It is interpreted that principal As-bearing minerals were derived from multiple sources, primarily from ophiolitic belts in the Indus-Tsangpo suture in the northeastern Himalayan and Indo-Burman Mountain ranges. Authigenic and amorphous Fe-(oxy)hydroxide minerals that are generally formed in river channels in the aerobic environment are the major secondary As-carriers in alluvial sediments. Reductive dissolution (mediated by Fe-reducing bacteria) of Fe-(oxy)hydroxide minerals under anoxic chemical conditions is the primary mechanism responsible for releasing As into groundwater. Authigenic siderite that precipitates under reducing environment at greater depths decreases Fe and possibly As concentrations in groundwater. Presence of Fe(III) minerals in aquifers shows that reduction of these minerals is incomplete and this can release more As if further Fe-reduction takes place with increased supplies of organic matter (reactive C). Absence of authigenic pyrite suggests that SO4 reduction (mediated by SO4-reducing bacteria) in Manikganj groundwater is limited in contrast to the southeastern Bengal Basin where precipitation of arsenian pyrite is thought to sequester As from groundwater.  相似文献   

9.
Glycerol dialkyl glycerol tetraether (GDGT)-based proxies are increasingly used in modern carbon cycling and palaeoenvironmental investigations. It is therefore crucial to examine the robustness (sources, transport and degradation) of all GDGT-based proxies in continental margins, where sedimentation rates and extent of carbon cycling are high. We have analyzed the distributions of GDGTs in surface sediments from the Lower Yangtze River and East China Sea (ECS) shelf. The results revealed multiple sources and complex shelf processes that govern the distributions. The isoprenoid GDGT-inferred sea surface temperatures (SSTs) are robust and reflect the satellite-derived annual mean SSTs on the shallow ECS shelf, confirming an origin from surface water column-dwelling crenarchaeota. The input from methanogen-sourced, isoprenoid GDGTs is significant in the river surface sediments but they are almost absent from the ECS shelf. Branched GDGTs are also abundant in the river sediments, but ca. 95% are degraded in the Yangtze estuary, a much greater extent than observed for other terrigenous organic matter (OM) proxies. There is also evidence for production of branched GDGTs in the oxic ECS shelf water column and the anoxic sediments/waters of the Lower Yangtze River. As a result, branched GDGT-based proxies in the lower river and ECS surface sediments do not reflect the catchment environmental conditions. The effective degradation in the estuary and widespread aquatic contributions of branched GDGTs improves our understanding of how to use branched GDGT-based proxies in marginal seas.  相似文献   

10.
Aquifer sediments from areas of low- and high-As groundwater were characterized mineralogically and geochemically at a field site in the Nadia district of West Bengal, India. Leaching experiments and selective extraction of the sediments were also carried out to understand the release mechanism of As in the sub-surface. The correlation between measured elements (major, minor and trace) from low- and high-As groundwater areas are only significant for As, Fe and Mn. The borehole lithology and percentage of silt and clay fraction demonstrates the dominance of finer sediments in the high-As aquifer. Multivariate analysis of the geochemical parameters showed the presence of four different mineral phases (heavy-mineral fraction, phyllosilicates/biotite/Fe-oxyhydroxides, carbonates and sulphides) in the sediments. Selective extraction of sediment reveals that amorphous Fe-oxyhydroxide acts as a potential sink for As in the sub-surface. The result is consistent with microbially mediated redox reactions, which are controlled in part by the presence of natural organic matter within the aquifer sediments. The occurrences of As-bearing redox traps, primarily formed of Fe- and Mn-oxides/hydroxides, are also important factors that control the release of As into groundwater at the study site.  相似文献   

11.
The Nepal Himalayas is the source of many glacial and spring-fed river systems crisscrossing the moun-tainous terrain.There is an increasing recognition of small mountain rivers(SMRs)to have a significant combined export of dissolved and particulate organic carbon to the global carbon flux.We analyzed flu-vial sediments from two SMRs and compared the results with two large mountain rivers(LMRs)in Nepal.We investigated the organic matter(OM),its compositional variability,and seasonal export using a suite of lipid biomarkers,namely n-alkanes,n-alkanoic acids,n-alkanols,and sterols.The SMRs indicated a similarity in lipid distribution and were affected by a strong seasonal variability.The LMRs showed a dis-tinct contrast in the distribution of lipids in suspended sediments.Bedload sediments in SMRs were derived from diverse sources with weak terrigenous dominance all-year-round compared to the sus-pended load.Functional lipids(n-alkanoic acids and n-alkanols)were the major constituents in SMR sed-iments,indicating better preservation.In contrast,n-alkane concentration dominated over other fractions in suspended sediments retrieved from LMRs.The biomarker trends differentiate SMRs from LMRs with lower transformed/degraded OM in SMRs.A common observation was the strong presence of even carbon compounds in short-chain n-alkanes in SMR bedload sediments and their predominance in suspended sediments in LMRs.Such an unusual trend is attributed to specific biomarker sources from the catchment and ongoing processes in fluvial systems.Topsoil colonized by fungal species under moist acidic condi-tions and autochthonous bacteria contributes to the organic matter pool in shallow SMRs.In LMRs,the contribution from thermally mature sedimentary hydrocarbons and the diagenetic reduction of n-alkanoic acids to n-alkanes are additional contributors to the allochthonous carbon pool.The differences in lipid concentrations,their distribution,seasonality,and the size of rivers suggest differential preserva-tion/degradation of the organic matter pool and their importance in contributing to the carbon budget.  相似文献   

12.
To understand the mechanism of arsenic mobilization from sediment to groundwater mediated by microorganism, vertical distribution of bacterial populations in aquifer sediments of the Hetao plain, Inner Mongolia was investigated by a two-step nested PCR-DGGE and 16S rRNA gene clone libraries, combined with sediment geochemistry. A borehole to 30 m depth was drilled and 11 sediment samples were collected. Lithological profile and different geochemical characteristics of sediments indicated a distinct transition of oxidizing–reducing environment along the depth of the sediment core. As(III) and Fe(II) concentrations elevated progressively from 10 m, simultaneously coupling with decrease of As(V) and Fe(III) concentrations, implying that reductive dissolution of arsenic-rich Fe(III) oxyhydroxides led to arsenic release. Results of DGGE displayed that sediment samples with higher concentrations of total arsenic and total organic carbon had lower population diversity, which suggested total arsenic concentrations were important to determine the population diversity of sediments. Bacterial communities of a sediment sample with the highest diversity and ratio of As(III) to total As were dominated by aerobic and facultative anaerobic bacteria and belonged to Alpha-, Beta-, and Gammaproteobacteria and Firmicutes group. Most of the retrieved sequences were closely related to high arsenic-resistance organisms, sulfide/thiosulfate oxidizers, denitrifiers, and aromatic hydrocarbon degraders. Thiobacillus distinctly predominated in clone library, which suggested that arsenic might be released by oxidized dissolution of sulfide minerals coupled to arsenate reduction or nitrate reduction in anaerobic condition. These data have important implications for understanding the microbially mediated arsenic mobilization in aquifers.  相似文献   

13.
The concentration of arsenic measured in groundwater from three aquifers in the study area located in the Eastern Tucuman province, Argentina, mostly depends on the lithology, but the spatial and temporal variations of concentrations seem to be also controlled by pH changes, climatic factors, and human perturbations. The highest concentrations of As (more than 1,000 μg L−1) were found in the shallow aquifer, made of As-rich loess, while the lowest concentrations were measured in the deep confined aquifer, consisting of alternating layers of alluvial sands/gravels and clays. Intermediate values were measured in the semiconfined aquifer made of the fluvial sediments deposited in the Salí River valley, that alternate in the upper part of the sedimentary sequence with layers of loess. Because most of As in the loess is considered to be adsorbed onto Fe-oxyhydroxide coatings, the increase of pH in the flow direction (west-east) leads to increasing arsenic concentrations towards the eastern border of the study area. The decomposition of organic wastes poured into the Salí River or associated with local and diffuse sources of contamination in the eastern part of the study area depletes dissolved oxygen, which leads to the reductive dissolution of Fe and Mn oxyhydroxides, and to the subsequent release of the adsorbed and co-precipitated As. This process mainly affects shallow groundwater and the upper part of the semiconfined aquifer. Geochemical and hydrological data also suggest that rising water table levels at the end of the wet season may also lead to reductive dissolution of As-rich Fe oxyhydroxides in the shallow aquifer.  相似文献   

14.
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.  相似文献   

15.
Thermal and mineral waters in north-eastern Slovenia   总被引:2,自引:0,他引:2  
 The Mura basin in north-eastern Slovenia is made up of two depressions, developed during the Late Neogene and Early Pliocene all within a widespread system of Pannonian basins. Both depressions are characterized by the occurrence of thermal waters of somewhat different hydrogeochemical character. Radgona depression is in the northern part of the basin and reaches depths of about 2 km. Thermal waters are generally dominated by sodium-bicarbonate, not related to the age of an aquifer, its wallrock composition, the type of porosity or total concentration of dissolved solids. Locally, sulphate-rich waters are encountered, and they are related to the presence of gypsum in the rocks of pre-Tertiary basement. The adjacent Ljutomer depression is over 4 km deep and comprises compartments with stagnant or semi-stagnant aquifers. Herein saline waters predominate, even in the aquifers of carbonate composition and abundant CO2 gas. In shallower, unconsolidated, intergranular aquifers sodium-bicarbonate waters predominate. Thermal aquifers of this type are very important to the economy of the region, but they are also subjected to overexploitation which is reflected in time-dependent changes of dynamic pressures, temperature, conductance, salinity, pH and concentration of major ions, trace elements, dissolved gasses, and total organic carbon. Mineral waters occur in shallow aquifers or springs in marginal areas of the Radgona depression. Bicarbonate waters are dominated by calcium, or both calcium and sodium. Some mineral waters are formed mainly by penetration of CO2 gas into shallow aquifers and consequent water–rock interaction. Composition of some mineral waters indicate their possible evolution from thermal waters which have risen from central parts of the Radgona depression along deep-seated faults, and have been modified by cooling and mixing processes. Received: 30 November 1998 · Accepted: 22 March 1999  相似文献   

16.
Dissolved trace elements and heavy metals of waters and sediments in the ten shallow lakes in the middle and lower reaches of the Yangtze River region were determined to identify their composition and spatial distribution, and to assess the extent of their environmentally detrimental effects by comparison with water and sediment quality guidelines. Results indicated that As and Pb were the main pollutants in lake waters and Mn and Hg the potential ones, while As, Cu and Pb were the main pollutants in lake sediments. Their spatial distribution indicated that Daye Lake was seriously polluted by metals, which was corroborated by cluster analysis. Higher concentrations of trace elements have been found in lakes downstream of the Yangtze River delta, and higher concentrations of metals have been recorded in sediments of upstream lakes, suggesting that metals in water were more sensitive to anthropogenic activities and that metals in sediment were mainly controlled by minerals. Correlation analyses demonstrated that there were stronger associations among metals in lake sediments than those in lake waters, and their good relationships suggested the common sources. Further research on the subject will help develop water quality management with the aim of restoring shallow lakes in the Yangtze River.  相似文献   

17.
Herein, lipid biomarker analysis is applied to surface sediments from the southeastern Niger Delta region for the quantitative determination of aliphatic lipids, steroids and triterpenoids in order to differentiate between natural (autochthonous vs. allochthonous) and anthropogenic organic matter (OM) inputs to this deltaic environment. This ecosystem, composed of the Cross, Great Kwa and Calabar Rivers, is receiving new attention due to increased human and industrial development activities and the potential effects of these activities impacting its environmental health. While the presence of low molecular weight n-alkanes (<C22) and the fossil biomarkers pristane and phytane in all samples, are indicative of a minor petroleum related input, the total extractable organic component of the surface sediments of these rivers remains predominantly of a natural origin as characterized by the variety and predominance of lipid classes that are mainly derived from the epicuticular waxes of vascular plants and include n-alkanes, n-alkanols, n-alkan-2-ones, n-alkanoic acids, steroids and triterpenoids. In addition, recent OM inputs from microorganisms are indicated by the presence of lower molecular weight n-alkanoic acids (Cmax = 16), while the major triterpenoids of the sediments, taraxerol and friedelin, and the major sterol, sitosterol, indicate recent OM inputs from vascular plants. Plankton-derived sterols, such as fucosterol and dinosterol, are also found in sediments from the Cross and Great Kwa Rivers and likely originate from autochthonous primary productivity. Furthermore, the coprosterols coprostanol and 24-ethylcoprostanol are present in most samples and indicate measurable anthropogenic contributions from domestic untreated sewage inputs and agricultural run-off, respectively. Of the three rivers studied, the Cross River system was excessively influenced by human and industrial development activities, including drivers such as urbanization and population center growth, land-use change to support agricultural production and animal husbandry, and petroleum exploration and production. These influences were found to be regionally specific as controlled by point sources of pollution based on the relative distributions measured and on the fact that the molecular characteristics of sedimentary OM were not distributed smoothly along a gradient.  相似文献   

18.
Microcosm experiments were conducted to understand the mechanism of microbially mediated mobilization of Fe and As from high arsenic aquifer sediments. Arsenic-resistant strains isolated from aquifer sediments of a borehole specifically drilled for this study at Datong basin were used as inoculated strains, and glucose and sodium acetate as carbon sources for the experiments. In abiotic control experiments, the maximum concentrations of Fe and As were only 0.47 mg/L and 0.9 μg/L, respectively. By contrast, the maximum contents of Fe and As in anaerobic microcosm experiments were much higher (up to 1.82 mg/L and 12.91 μg/L, respectively), indicating the crucial roles of microbial activities in Fe and As mobilization. The observed difference in Fe and As release with different carbon sources may be related to the difference in growth pattern and composition of microbial communities that develop in response to the type of carbon sources.  相似文献   

19.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   

20.
This study reports a multi-parameter geochemical investigation in water and sediments of a shallow hyper-eutrophic urban freshwater coastal lake, Zeekoevlei, in South Africa. Zeekoevlei receives a greater fraction of dissolved major and trace elements from natural sources (e.g., chemical weathering and sea salt). Fertilizers, agricultural wastes, raw sewage effluents and road runoff in contrast, constitute the predominant anthropogenic sources, which supply As, Cd, Cu, Pb and Zn in this lake. The overall low dissolved metal load results from negligible industrial pollution, high pH and elevated metal uptake by phytoplankton. However, the surface sediments are highly polluted with Pb, Cd and Zn. Wind-induced sediment resuspension results in increased particulate and dissolved element concentrations in bottom waters. Low C/N ratio (10) indicates primarily an algal source for the sedimentary organic matter. Variation in sedimentary organic C content with depth indicates a change in primary productivity in response to historical events (e.g., seepage from wastewater treatment plant, dredging and urbanization). Primary productivity controls the enrichment of most of the metals in sediments, and elevated productivity with higher accumulation of planktonic debris (and siltation) results in increased element concentration in surface and deeper sediments. Aluminium, Fe and/or Mn oxy-hydroxides, clay minerals and calcareous sediments also play an important role in adsorbing metals in Zeekoevlei sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号