首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red-staining of rocks due to fluid–rock interaction during hydrothermal circulation in fractures is a common feature in crystalline sequences. In this study, red-stained metagranitic rock adjacent to fractures in Forsmark, central Sweden, has been studied with emphasis on the mineral reactions and associated element mobility occurring during the alteration. The main mineral reactions associated with the hydrothermal alteration are an almost complete saussuritization of plagioclase accompanied by total chloritization of biotite. Magnetite has been partly replaced by hematite whereas quartz and K-feldspar were relatively unaffected by the hydrothermal alteration. We show that redistribution of elements on the whole rock scale was very limited and is mainly manifested by enrichment of Na2O and volatiles and depletion of CaO, FeO and SiO2 in the red-stained rock. However, on the microscale, element redistribution was more extensive, with both intragranular and intergranular migration of e.g. Ca, K, Na, Al, Si, Fe, Ba, Cs, Rb, Sr, Ti and REEs. The altered rock shows a shift towards higher total oxidation factors, but the change is smaller than 1σ and the red-staining of the rock is due to hematite dissemination rather than a significant oxidation of the rock. An increase in the connected porosity is also observed in the altered rock.  相似文献   

2.
Tourmalines from the Kalinovka porphyry copper deposit with epithermal bismuth-gold-basemetal mineralization and the Michurino gold-silver-base-metal prospect have been studied in the South Urals. Tourmaline from the Kalinovka deposit occurs as pockets and veinlets in quartz-sericite metasomatic rock and propylite. The early schorl-“oxy-schorl” [Fetot/(Fetot + Mg) = 0.66?0.81] enriched in Fe3+ is characterized by the homovalent isomorphic substitution of Fe3+ for Al typical of propylites at porphyry copper deposits. The overgrowing tourmalines of the second and third generations from propylite and quartz-sericite metasomatic rock are intermediate members of the dravite-magnesio-foitite solid solution series [Fetot/(Fetot + Mg) = 0.05?0.46] with homovalent substitution of Mg for Fe2+ and coupled substitution of X ? + YAl for XNa + YMg. These substitutions differ from the coupled substitution of YAl + WO2? for YFe2+ + WOH? in tourmaline from quartz-sericite rocks at porphyry copper deposits. At the Michurino prospect, the tourmaline hosted in the chlorite-pyrite-quartz veins and veinlets with Ag-Au-Cu-Pb-Zn mineralization is an intermediate member of the dravite-magnesio-foitite solid solution series [Fetot/(Fetot + Mg) = 0.20?0.31] with homovalent substitution of Mg for Fe2+ and coupled substitutions of X ? + YAl for XNa + YMg identical to that of late tourmaline at the Kalinovka deposit. Thus, tourmalines of the porphyry and epithermal stages are different in isomorphic substitutions, which allow us to consider tourmaline as an indicator of super- or juxtaposed mineralization.  相似文献   

3.
胶东焦家金矿床热液蚀变作用   总被引:5,自引:7,他引:5  
胶东作为中国最重要的金矿集区,区内大型-超大型金矿床集中产出,已探明金矿资源量占全国近1/3。其中,破碎带蚀变岩型金矿床是最重要的金矿床类型,占胶东已探明金矿资源量的90%以上,焦家金矿床是著名的"焦家式"破碎带蚀变岩型金矿的命名地,内发育大规模的绢英岩化蚀变带(宽20~200m)和钾化蚀变带(50~300m),蚀变岩型金矿体主要发育在焦家断裂带下盘的绢英岩化蚀变带中。本文通过详细的野外地质观测,查清了焦家金矿床蚀变类型及矿物组合特征,系统采集了不同蚀变类型的岩石样品,进行了岩石元素地球化学分析,运用质量平衡方法讨论了热液蚀变过程中元素迁移规律,初步探讨了焦家金矿床热液蚀变机理。其中,钾化蚀变是成矿前蚀变,钾化花岗岩常以团块状或角砾状残留于黄铁绢英岩和绢英岩内;黄铁绢英岩化和绢英岩化蚀变受焦家断裂及其下盘的次级断裂控制,其规模大小受断裂的规模控制;其中焦家主断裂下盘的绢英岩化蚀变带规模最大,一般宽10~200m;而次级断裂控制的绢英岩化蚀变带规模相对较小,一般以0.1~1m宽的脉状发育在钾化花岗岩内,指示绢英岩化蚀变晚于钾化蚀变。相对于黑云母花岗岩,不同蚀变带岩石普遍表现出高K2O、低Al2O3、CaO和Na2O,而不同蚀变岩石Si、Fe、Mg等元素各表现出不同特征。钾化带岩石表现为K2O的富集,而绢英岩带和黄铁绢英岩带岩石表现为MgO、Fe2O3增加的趋势。黑云母花岗岩发生钾化蚀变过程中,SiO2、K2O表现为明显的带入,指示在钾长石化过程中,流体为富硅的碱性氧化流体。在钾化花岗岩→黄铁绢英岩过程中,Fe2O3表现为明显的带入,可能是由于黑云母等暗色矿物的分解造成的;此外,亲硫元素(Au、Ag、As、Pb、Zn)均表现为带入,特别是成矿元素Au表现为明显的带入。结合本区金的来源可能部分为玲珑黑云母花岗岩,本研究认为钾化过程中的富硅碱性氧化流体通过交代蚀变反应使金从围岩中释放、成为高价态离子活化进入成矿流体,即分散还原态的金(Au0)被活化为氧化态(Au+、Au3+)以AuH3SiO4形式随热液迁移。在绢英岩化过程中,热液中的SiO2等组分损失,引起热液中的AuH3SiO4稳定性降低,造成AuH3SiO4分解,Fe2+、Fe3+被消耗形成黄铁矿,导致金大量沉淀和聚集沉淀,此时完成了金由活化→迁移→沉淀富集成矿。  相似文献   

4.
To evaluate mineralogical-geochemical changes within the reservoir of the Ketzin pilot CO2 storage site in Brandenburg, Germany, two sets of laboratory experiments on sandstone and siltstone samples from the Stuttgart Formation have been performed. Samples were exposed to synthetic brine and pure CO2 at experimental conditions and run durations of 5.5 MPa/40 °C/40 months for sandstone and 7.5 MPa/40 °C/6 months for siltstone samples, respectively. Mineralogical changes in both sets of experiments are generally minor making it difficult to differentiate natural variability of the whole rock samples from CO2-induced alterations. Results of sandstone experiments suggest dissolution of the anorthite component of plagioclase, anhydrite, K-feldspar, analcime, hematite and chlorite + biotite. Dissolution of the anorthite component of plagioclase, anhydrite and K-feldspars is also observed in siltstone experiments. In an inverse modeling approach, an extensive set of equilibrium simulations was set up in order to reproduce the experimental observations of the sandstone experiments. Simulations generally show fairly good matches with the experimental observations. Best matches with measured brine data are obtained from mineral combinations of albite, analcime, anhydrite, dolomite, hematite, illite, and kaolinite. The major discrepancies during equilibrium modeling, however, are reactions involving Fe2+ and Al3+. The best matching subsets of the equilibrium models were finally run including kinetic rate laws. These simulations reveal that experimentally determined brine data was well matched, but reactions involving K+ and Fe2+ are not fully covered. The modeling results identified key primary minerals as well as key chemical processes, but also showed that the models are not capable of covering all possible contingencies.  相似文献   

5.
Surface and borehole core samples from the Lac du Bonnet granite, Manitoba, Canada, have been analysed for major element concentrations,Fe3+/Fe (total) ratios, rare earth element (REE) content and actinide isotopic abundances. This work forms part of the geological investigations of the Canadian Nuclear Fuel Waste Management Program, performed by Atomic Energy of Canada Limited (AECL). The study attempts to understand the history of, and processes governing, mobilisation of elements and naturally occurring radionuclides during high- and low-temperature alteration events in fluid-bearing fractures in the granite.One surface sample and two core samples (from ∼ 150 m and 730 m) are each in contact with fractures in the granite and show evidence of alteration events that penetrated the rock matrix over distances of at least 3 cm. Loss of Ca and Na is seen in cores from a depth of ∼ 150 m from the highly altered, hematite-rich rock adjacent to sub-horizontal fracture zones at the Underground Research Laboratory (URL) of AECL, near Lac du Bonnet. In contrast, K, Fe,Fe3+/Fe and U concentrations increase towards the fracture surface due to formation of illite and association of U with hematite and the illite. At the fracture surface, U continues to increase, but Fe and theFe3+/Fe ratio decrease indicating Fe removal by reduction. The REE also show some enrichment in more altered rock at intermediate depths, but the total REE concentration is lower than in the surface and deep core samples. No clear trends are visible for parent and fracture-surface REE in surface and deep core samples, however.Disequilibrium values of234U/238U and 230Th/234U ratios in surface and intermediate depth core samples indicate that U has been mobilised in recent geological time (the last Ma), but Th has remained relatively immobile. High Th/U and230Th/234U ratios in surface samples are indicative of rapid leaching of U but little isotopic fractionation, probably within the last 105 a. Apparently unaltered rock, several centimetres distant from the fracture in surface and intermediate- depth samples, has lost appreciable U, but evidence from U-series disequilibrium studies suggests that this process occurred more than one million years ago, perhaps during deuteric or hydrothermal alteration. Core from a fracture at depth in the granite shows little hematite or clay formation and lacks evidence of REE and recent or ancient actinide mobilisation.The U-series results are correlated with the observed concentrations and isotope activity ratios of U in groundwaters sampled from the same or adjacent fractures. Analyses of samples of highly altered rubble recovered from centre portions of fracture zones at the URL show both excesses and deficiencies of234U and230Th in neighbouring locations, possibly due to the presence of a redox front whose position is controlled by modern groundwater composition.The implications of these results are discussed for the concept of disposal of nuclear fuel waste at depth in plutonic rock on the Canadian Shield.  相似文献   

6.
《Chemical Geology》1992,94(3):215-227
Tourmaline is a ubiquitous mineral in the Mid-Proterozoic, peraluminous, syn- to post-tectonic granites and aplites and the related hydrothermal rocks of the Karagwe-Ankolean belt in northwest Tanzania. Electron microprobe analysis indicates that tourmalines from all of the intrusive and hydrothermal lithologies: (1) belong to the schorl-dravite solid-solution series; and (2) plot within the field occupied by tourmaline from Li-poor granitoids on the Fe-Al-Mg classification diagram. Oxygen isotope compositions range from +12.2 to +11.6‰ (SMOW) for magmatic tourmalines and from +10.8 to +9.8‰ for those of hydrothermal origin. Hydrogen isotope compositions vary from −79 to − 65‰ (SMOW) for magmatic tourmalines and from −99 to −84‰ for hydrothermal tourmalines. Water contents measured by manometry are constant at 3.0–3.2 wt.%. Within the broad grouping there arc systematic variations in both chemical [particularly Fetot/(Fetot + Mg ratio)] and isotopic composition that relate to evolving magmatic and hydrothermal conditions. Igneous differentiation [increasing Fetot/(Fetot + Mg) in magmatic tourmaline] has produced trends with higher δ18O in quartz, lower δ18O in tourmaline, and larger ΔQTZ.−TOUR.-values, that reflect a combination of a reduction of crystallization temperature and an increase of Fetot/ (Fetot + Mg) in the residual melt. Subsequent cooling and interaction of an exsolved, B-rich magmatic fluid with the pelitic country rocks, resulted in the deposition of hydrothermal tourmaline with increasing Fetot/(Fetot + Mg) ratios, and progressively lower δ18O and δD -values.  相似文献   

7.
57Fe-Mössbauer spectra of eleven Fe-Mg-bearing staurolite samples, synthesized at 5, 20 and 25 kbar and 680°C, ranging in composition from xFe?=1.00 to xFe?=0.15, and of two Zn-Fe-bearing staurolite samples, synthesized at 20 kbar and 700°C with xFe?=0.10 and xFe?=0.32 were collected at room temperature. The spectra reveal that about 80% of Fetot (in case of Fe-Mg-bearing staurolite) and about 70% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the three subsites Fe1, Fe2 and Fe3 of the tetrahedral T2-site. The refinement of the spectra results in almost identical values for the isomer shift (IS) (±1.0 mm/s) but significantly different values for the quadropole splitting (QS) for the three subsites which is in accordance with the different distortions of these sites. About 8% of Fetot (in case of Fe-Mg-bearing staurolite) and 13% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the octahedral M4 site, while the remainder percents of Fetot indistinguishably occur as Fe2+ at the octahedral M1 and M2 sites of the kyanite-like part of the structure. Within the whole Fe-Mg-staurolite solid solution series the Mössbauer parameters QS of the sites M4 and (M1, M2) vary systematically with composition whereas IS remains constant. There is a high negative correlation of the total Mg-content with Fe-occupation of all the Fe-bearing sites indicating a continuous substitution of Fe2+ by Mg on all these sites. Synthetic Fe-staurolites show no increasing occupation of the octahedral sites by two-valent cations with pressure, as was assumed by several authors.  相似文献   

8.
Three generations of tourmaline have been identified in propylite in the Vetka porphyry copper-molybdenum deposit of the Chukchi Peninsula of Russia. Tourmaline-I is characterized by its Fetot/(Fetot + Mg) value, which ranges from 0.33 to 0.49. Tourmaline-II, which crystallizes at a lower temperature, overgrowing tourmaline-I or occurring as isolated crystals, is distinguished by a higher Fetot/(Fetot + Mg), which varies from 0.46 to 0.72. The Fetot/(Fetot + Mg) ratio in tourmaline-III, which overgrows tourmaline-II is lower (0.35–0.49), and is identical to that of the first tourmaline generation. This is probably caused by the beginning of sulfide deposition. Tourmalines in the deposit characterized by complex isomorphic substitutions can be attributed to the intermediate members of the dravite—“hydroxy-uvite”-“oxy-uvite” and schorl-“hydroxy-feruvite”-“oxy-feruvite” series. Tourmaline starts to crystallize at temperatures above 340°C. The fluid responsible for the tourmaline deposition was magmatic, with a significant admixture of meteoric water (δ18OH 2O = −0.85 to −0.75‰). The high Fe3+/Fetot ratio (0.50) indicates high oxygen activity when the tourmaline precipitated. It has been established that the isomorphic substitution Fetot → Al is typomorphic of tourmalines from porphyry copper deposits worldwide.  相似文献   

9.
An 1800-m-deep borehole into the Nojima fault zone was drilled at Nojima-Hirabayashi, Japan, after the 1995 Hyogo-ken Nanbu (Kobe) earthquake. Three possible fracture zones were detected at depths of about 1140, 1300, and 1800 m. To assess these fracture zones in this recently active fault, we analyzed the distributions of fault rocks, minerals, and chemical elements in these zones. The central fault plane in the shallowest fracture zone was identified by foliated blue-gray gouge at a depth of 1140 m. The degree of fracturing was evidently greater in the hanging wall than in the footwall. Minerals detected in this zone were quartz, orthoclase, plagioclase, and biotite, as in the parent rock (granodiorite), and also kaolinite, smectite, laumontite, stilbite, calcite, ankerite, and siderite, which are related to hydrothermal alteration. Biotite was absent in both the hanging wall and footwall across the central fault plane, but it was absent over a greater distance from the central fault plane in the hanging wall than in the footwall. Major element compositions across this zone suggested that hydrothermal alteration minerals such as kaolinite and smectite occurred across the central fault plane for a greater distance in the hanging wall than in the footwall. Similarly, H2O+ and CO2 had higher concentrations in the hanging wall than in the footwall. This asymmetrical distribution pattern is probably due to the greater degree of wall–rock fracturing and associated alteration in the hanging wall. We attributed the characteristics of this zone to fault activity and fluid–rock interactions. We analyzed the other fracture zones along this fault in the same way. In the fracture zone at about 1300 m depth, we detected the same kinds of hydrothermal alteration minerals as in the shallower zone, but they were in fewer samples. We detected relatively little H2O+ and CO2, and little evidence for movement of the major chemical elements, indicating little past fluid–rock interaction. In the fracture zone at about 1800 m depth, H2O+ and CO2 were very enriched throughout the interval, as in the fracture zone at about 1140 m depth. However, smectite was absent and chlorite was present, indicating the occurrence of chloritization, which requires a temperature of more than 200 °C. Only smectite can form under the present conditions in these fracture zones. The chloritization probably occurred in the past when the fracture zone was deeper than it is now. These observations suggest that among the three fracture zones, that at about 1140 m depth was the most activated at the time of the 1995 Hyogo-ken Nanbu (Kobe) earthquake.  相似文献   

10.
Diorite plutons at Al Hadah Saudi Arabia, which constitute part of the pan-African magmatic sequence (ca. 600 Ma), exhibit extensive development of epidote. The epidote alteration is concentrated along veins and dyke margins, and is characterised by transformation of plagioclase (Ab 67)+hornblende+biotite+quartz to epidote+hornblende+tremolite−actinolite+plagioclase (Ab 99)±quartz. The reactions involve addition of CaO and total Fe2O3, depletion of MgO, Na2O and K2O, with variable gains or losses of SiO2. Epidotised alteration products are hydrated and oxidised relative to the diorite precursor. The whole rock δ18O of fresh diorite is + 8.2‰ to + 8.8‰, whereas epidote domains have δ18O whole rock of +9.8‰ to +10.48‰ and negative Δ18Oquartz-plagioclase, implying oxygen isotope exchange with fluids at low temperatures. Epidotisation is considered to have accompanied influx of fluids into plutons during cooling and contraction. The fluids were probably deep formation waters with relatively high Ca2+/Na+ ratios, moving up thermal gradient.  相似文献   

11.
The Damoshan deposit is a small B-F-Sn Bi exoskarn deposit and contains a distinctive mineral assemblage comprising andradite,vesuvianite,calcite,diopside,magnetite,hematite,nordenskioldine,cassiterite,varlamoffite,schenfliesite,native bismuth,eulytite,bismite and bismuthite,in which the occurrence of eulytite is the first reported in China.Textures of the mineral paragenses show that andradite,vesuvianite and diopside were the earliest phases formed during metasomatism,i.e.,the skarn forming stage.Then nordenskioldine,magnetite and native bismuth,perhaps together with eulytite,were precipitated at the stage of retrograde alteration.The minerals varlamoffite,schoenfliesite,hematite ,bismite and bismuthite were probably the product of supergene alteration.The minerals were analyzed by means of electron microprobe.The data on the ,coexisting phases and their compositons show that during the metasomatism reduced F-and Sn-rich primary mineralizing solutions reacted with highly oxidized carbonated of the Gejie Formation,producing a high Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(andradite skarn)in the outer zone of the skarn body in which andradite is extremely tin-bearing up to 5.14 wt% SnO2),In the retrograde alteration stage ,B-rich,but F-and Si-deficient mineralizing solutions replaced the tin-bearing andradite,forming an association of nordenskioldine and magnetite,No sulphides were deposited at this stage because of the oxidization ambient conditions in the andradite skarn.In the spergene oxidation zone,the nordenskioldine was dissolved into varlmoffite and calcite,the native bismuth was transformed into bismite or bismuthite ,and the magnetite was altered into hematite under the action of the CO2-rich supergene solutions.  相似文献   

12.
Ferrous and ferric iron concentrations in feldspars with low total iron content (<0.32 wt% total Fe) were determined from optical and electron paramagnetic resonance (EPR) spectra to better than ±15 percent of the amount present. Optical spectra indicate that Fe2+ occupies two distorted M-sites in plagioclases of intermediate structural state. The linear dependence of the Fe2+/Fe total ratio on An content demonstrates that Fe2+ substitutes for Ca (not Na) so that the number of Ca-sites is a principal factor in iron partitioning in plagioclase. EPR powder spectra show that the number of sites for Fe3+ depends on structural state rather than on plagioclase chemistry. The observed linear correspondence of EPR double-integrated intensities with optical peak areas shows that all Fe3+ is tetrahedrally coordinated in both plagioclase and disordered potassium feldspar. Microcline perthites show, in addition to tetrahedral Fe3+, a signal due to axially coordinated ferric iron, which we associate with formation of hematite inclusions.  相似文献   

13.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

14.
《International Geology Review》2012,54(13):1497-1531
The NW–SE-trendingLate Cretaceous–Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) in southwest Iran hosts numerous Plio-Quaternary subvolcanic porphyritic andesitic to rhyodacitic domes intruded into a variety of rock sequences. Bulk-rock geochemical data show that the calc-alkaline dacitic to rhyodacitic subvolcanic rocks share compositional affinities with high-silica adakites, including high ratios of Na2O/K2O >1, Sr/Y (most >70), and La/Yb (>35), high Al2O3 (>15 wt.%), low Yb (<1.8 ppm) and Y (<18 ppm) contents, no significant Eu anomalies, and flat to gently upward-sloping chondrite-normalized heavy rare-earth element (HREE) patterns. All analysed rocks are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs). They also display typical features of subduction-related calc-alkaline magmas. In chondrite-normalized rare-earth element patterns, the light rare-earth elements (LREEs) are enriched ((La/Sm) N = 3.49–7.89) in comparison to those of the HREE ((Gd/Yb) N = 1.52–2.38). Except for the G-Aliabad Dome, plagioclase crystals in the Shamsabad, Ostaj, Abdollah, and Bouragh Domes are mostly oligoclase to andesine (An19–49). Amphibole and biotite are abundant ferromagnesian minerals in the subvolcanic rocks. Calcic amphiboles are dominantly magnesiohornblende, magnesiohastingsite, and tschermakite with Mg/(Mg + Fetot) ratios ranging from 0.58 to 0.78. In all the studied domes, amphiboles are typically ferric iron-rich, but that those the Shamsabad Dome have the highest Fe3+/(Fe3+ + Fe2+) ratios, between 0.69 and 0.98. Amphiboles from the Ostaj and Shamsabad Domes are relatively rich in F (0.39–1.01 wt.%) in comparison to the other studied domes. This phase commonly shows pargasitic and hastingsitic substitutions with a combination of tschermakitic and edenitic types.

Temperature-corrected Al-in-hornblende data show that amphibole phenocrysts from the Ostaj, Abdollah, and G-Aliabad Domes crystallized at pressures ranging from 2.14 to 3.42 kbar, 3.49 to 3.96 kbar, and 2.02 to 3.47 kbar, respectively. Temperatures of crystallization calculated with the amphibole–plagioclase thermometer for the Ostaj, Abdollah, and G-Aliabad subvolcanic domes range from 735°C to 826°C (mean = 786 ± 29), 778°C to 808°C (mean = 791 ± 13), and 866°C to 908°C (mean = 885 ± 12), respectively. In the annite–siderophyllite–phlogopite–eastonite quadrilateral, biotite from the G-Aliabad, Bouragh, and Ostaj Domes are characterized by relatively low total Al contents with variable Fetot/(Fetot + Mg) values from 0.26 to 0.43. All biotite analyses define a nearly straight line in the X Mg versus Fetot plot, with r = –0.96 correlation coefficient. In comparison to other domes, the F content of biotite from the G-Aliabad Dome shows high concentrations in the range of 1.80–2.57 wt.% (mean = 2.20). Inferred pre-eruptive conditions based on the calcic amphibole thermobarometric calculations for the Shamsabad, Abdollah, and Ostaj Domes show that the calc-alkaline subvolcanic magma chamber, on average, was characterized by a water content of 6.10 wt.%, a relatively high oxygen fugacity of 10–10.66 (ΔNNO + 1.28), a temperature of 896°C, and a pressure of 2.75 kbar.  相似文献   

15.
Fluid infiltration at great depth during regional metamorphism plays a major role in mass transport and is responsible for significant rheological changes in the rock. Calc-silicate rocks of the Kajalbas area of Delhi Fold Belt, Rajasthan, are characterised by foliation parallel alternate bands of amphibole-rich and clinopyroxene–plagioclase feldspar-rich layers of varying thicknesses (mm to decimetre thick). Textural relation suggests that the amphibole grains formed from clinopyroxene and plagioclase in the late phase of regional deformation. Algebraic analysis of the reaction textures and mineral compositions was performed with the computer program C-Space to obtain the balanced chemical reactions that led to the formation of amphibole-rich bands. The computed balanced reaction is 70.74 Clinopyroxene + 27.23 Plagioclase + 22.018 H2O + 5.51 K++ 1.00 Mg2++ 27.15 Fe2+ = 22.02 Amphibole + 67.86 SiO2 aqueous + 36.42 Ca2++ 8.98 Na+. The constructed reaction suggests that aqueous fluid permeated the calc-silicate rock along mm to decimetre thick channels, metasomatized the clinopyroxene–plagioclase bearing rocks to form the amphibole-rich layers. The regional deformation presumably created the fluid channels thereby allowing the metasomatic fluid to enter the rock system. The above reaction has large negative volume change for solid phases indicating reaction-induced permeability. Thermodynamic calculations suggest that the fluid–rock interaction occurred at 665 ±05°C and 6.6 ±0.25 kbar (corresponding to ~20 km depth). Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate rocks of Mesoproterozoic Phulad Shear Zone thus indicate that extremely channelled fluid flow was reaction enhanced and caused major change in the rock rheology.  相似文献   

16.
La Cabaña peridotite is part of a dismembered ophiolite complex located within the metamorphic basement of the Coastal Cordillera of south-central Chile, and is the only location in Chile were Cr-spinels have been described so far. The La Cabaña peridotite is part of the Western Series unit, which comprises meta-sedimentary rocks, metabasites, and serpentinized ultramafic rocks. This unit has been affected by greenschist-facies metamorphism with reported peak PT conditions of 7.0–9.3 kbar and 380°–420 °C. Within La Cabaña peridotite Cr-spinels are present in two localities: Lavanderos and Centinela Bajo. In Lavanderos, Cr-spinel occurs in small chromitite pods and as accessory/disseminated grains with a porous or spongy texture in serpentinite, whereas in Centinela Bajo Cr-spinel is present as accessory zoned grains in partly serpentinized dunites, and in chromitite blocks. All Cr-spinels display variable degrees of alteration to Fe2+-rich chromite with a variation trend of major elements from chromite to Fe2+-rich chromite similar to those observed in other locations, i.e., an increase in Fe2O3 and FeO, a decrease in Al2O3 and MgO. Cr2O3 content increases from chromite to Fe2+-rich chromite in chromitite pods from Lavanderos and chromitite blocks from Centinela Bajo, but decreases in ferrian chromite zones in accessory grains from Centinela Bajo. The minor element (Ti, V, Zn, Ni) content is mostly low and does not exceed 0.4 wt.%, with the exception of MnO (<0.9 wt.%), which shows a correspondence with increasing degree of alteration. Cr# (Cr/Cr?+?Al) versus Mg# (Mg/Mg?+?Fe2+) and Fe3+/Fe3++Fe2+ versus Mg# plots are used to illustrate the Cr-spinel alteration process. Overall, the Cr-spinels from Lavanderos (chromitite pods and disseminated grains) exhibit Cr# values ranging from 0.6 to 1.0, Mg# (Mg/Mg?+?Fe2+) below 0.5, and (Fe3+/Fe3++Fe2+) <0.4. Cr-spinels from chromitites in Centinela Bajo have Cr# and Mg# values that range from 0.65 to 1.0, and 0.7-0.3, respectively, and (Fe3+/Fe3++Fe2+)?3+/Fe3++Fe2+) ratio is less than 0.4 in chromite cores and Fe2+-rich chromite, and >0.5 in ferrian chromite and Cr-magnetite. Interpretation of the data obtained and Cr-spinel textures indicate that the alteration of Cr-spinel is a progressive process that involves in its initial stages the reaction of chromite with olivine under water-saturated conditions to produce clinochlore and Fe2+-rich chromite. During this stage the chromite can also incorporate Ni, Mn, and/or Zn from the serpentinization fluids. As alteration progresses, Fe2+-rich chromite loses mass resulting in the development of a spongy texture. In a later stage and under more oxidizing conditions Fe3+ is incorporated in chromite/Fe2+-rich chromite shifting its composition to an Fe3+-rich chromite (i.e., ferrian chromite). Depending on the fluid/rock and Cr-spinel/silicate ratios, Cr-magnetite can also form over Fe2+-rich chromite and/or ferrian chromite as a secondary overgrowth. The compositional changes observed in Cr-spinels from La Cabaña reflect the initial stages of alteration under serpentinization conditions. Results from this study show that the alteration of Cr-spinels is dependent on temperature. The degree and extent of alteration (formation of Fe2+-rich and/or ferrian chromite) are controlled by the redox nature of the fluids, the Cr-spinel/silicate and the fluid/rock ratios.  相似文献   

17.
The analysis of available data on the Fe3+/Fe2+ ratio of impact-produced glasses showed that tektites and some other types of impact glasses are reduced compared with the precursor target material. Possible reasons for the change in the degree of iron oxidation in the impact process are still debatable. Based on the analysis of redox reactions in relatively simple systems with iron in different oxidation states (Fe-O and SiO2-FeO-Fe2O3) and the available data on the influence of temperature, oxygen partial pressure (pO2), and total pressure (P tot) on the Fe3+/Fe2+ ratio of silicate melts, a model was proposed suggesting that the lower Fe3+/Fe2+ values of tektites formed in the impact process compared with the initial target material could be related to the characteristics of oxygen regime during the decompression stage following shock compression. One of the main prerequisites for the occurrence of reduction reactions involving iron and other elements is the attainment of high temperatures (>1800–2000°C) at a certain stage of decompression, providing the complete melting and partial evaporation of the material. When the vapor pressure in the system becomes equal to the total pressure during adiabatic decompression, a further decrease in P tot will be inevitably accompanied by a decrease in pO2 and, correspondingly, partial reduction of Fe3+ to Fe2+ in the melt. The reactions of decompression reduction occur under closed-system conditions and do not require oxygen removal from the system. The higher the temperature and Fe3+/Fe2+ ratio of the melt, the more extensive iron reduction can be observed during the final stages of decompression. If the temperatures attained during decompression after an impact event are sufficient (>2500–3000°C) for the complete evaporation of the material, the melt produced during subsequent condensation must be significantly more reduced than the initial material. The final stage of the impact process is characterized by a catastrophic expansion of the explosion cloud, condensation, and rapid cooling. During this stage, the system is already not closed. The quenched glasses of this stage record the redox state of earlier melts. In addition, they can contain microinclusions of the products of nonequilibrium vapor condensation with iron compounds of different oxidation states, including metallic iron and iron oxides (wüstite, magnetite, and hematite).  相似文献   

18.
The bulk composition and mineralogy of hydrothermally altered tholeiite, along with the composition and speciation of fluid, have been determined for a well-defined alteration zone at 240°C and 110 bars at Svartsengi, Iceland. Mass balances between the geothermal fluid and altered tholeiite, relative to a seawater/fresh water mixture and unaltered tholeiite, indicate the overall reaction per 1000 cm3 is: 1325 gm plagioclase + 1228 gm pyroxene + 215 gm oxide-minerals break down to form 685 gm chlorite + 636 gm albite + 441 gm quartz + 249 gm epidote + 266 gm calcite + 201 gm oxide-minerals + 15 gm pyrite, requiring an influx of 123 gm CO2, 10 gm H2S and 4 gm Na2O and a release of 57 gm SiO2, 35 gm FeO, 21 gm CaO, 8 gm MgO and 4 gm K2O.Principal reactions, deduced from textural evidence, include Na-Ca exchange in plagioclase, precipitation of quartz, calcite and anhydrite, and formation of chlorite and epidote by reactions between groundmass minerals and fluid.Thermodynamic analyses of authigenic minerals and downhole fluid indicate that the fluid maintains a state close to equilibrium with the secondary mineral phases chlorite, epidote, albite, quartz, calcite, prehnite, anhydrite, pyrite and magnetite, whereas remnant primary labradorite and augite are out of equilibrium with the fluid.Water/rock ratios for the system are determined under a variety of assumptions. However, the open nature of the system makes comparisons with experimental and theoretical closed system studies ambiguous.  相似文献   

19.
Summary Chromian spinel occurs in feldspathic metaperidotites and feldspathic metaharzburgites, respectively, at Mangabal I and II mafic-ultramafic layered complexes, Brazil. Both complexes were metamorphosed (700-750°C and 6-7 Kbars) under variable PH 2O conditions. Wherever PH 2O = Ptot an almost complete metamorphic recrystallization occurred, but where PH 2O < Ptot relict igneous cumulate textures are well preserved. Chromian spinel occurs as opaque grains included in cumulus olivine and as brown translucent crystals enclosed by intercumulus orthopyroxene, clinopyroxene, and plagioclase. Subsolidus reactions resulted in exsolution of opaque spinel into two phases: a Fe+2Fe 2 +3 -rich and a MgAl2-rich one. Fe2TiO4-rich lamellae and patches may also occur. Coronas developed between olivine and plagioclase including orthopyroxene, pargasite and MgAl2-rich green spinel. Whenever complete metamorphic reequilibration occurred (PH 2O = Ptot) the brown and green spinels reacted with silicate phase to form clinochlore, leaving the Fe+2Fe 2 +3 -rich spinel phase, magnetite.
Chromspinelle in metamorphen, ultramafischen Gesteinen der Mangabal I und II Komplexe, Goiás, Brasilien
Zusammenfassung Chromspinell kommt in feldspatführenden Metaperidotiten und Metaharzburgiten in den geschichteten mafisch-ultramafischen Komplexen in Mangabal I and II, Brasilien, vor. Beide Komplexe wurden unter variablem PH 2O metamorphisiert (700–750°C, 6–7 Kbar). Während unter fluidreichen Bedingungen (PH 2(O = Ptot) eine beinahe vollständige metamorphe Rekristallisation erfolgte, bleiben unter PH 2O < Ptot reliktische magmatische Kumulustexturen erhalten. Chromspinell tritt in opaken körnern in Kumulus-Olivin und als braune, durchscheinende Körner, eingeschlossen in den Interkumulusmineralen Orthopyroxen, Klinopyroxen und Plagioklas, auf. Subsolidusreaktionen resultierten in der Entmischung von opakem Spinell in eine Fe2+ Fe 2 3+ -und eine MgAl2-reiche Phase. Fe2TiO4-reiche Lamellen und Nester treten außerdem auf. Koronas zwischen Olivin und Plagioklas bestehen aus Orthopyroxen, Pargasit und grünem MgAl2-reichem Spinell. Dort wo ein vollständige metamorphe Reequilibration (PH 2O = Ptot) erfolgte, reagierte brauner und grüner Spinell mit Silikaten und bildete clinochlor, unter Zurücklassung von Fe2+Fe 2 3+ -reichem Spinell, dem Magnetit.


With 8 Figures  相似文献   

20.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号