首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial recharge plays a pivotal role in the sustainable management of groundwater resources. This study proposes a methodology to delineate artificial recharge zones as well as to identify favorable artificial recharge sites using integrated remote sensing (RS), geographical information system (GIS) and multi-criteria decision making (MCDM) techniques for augmenting groundwater resources in the West Medinipur district of West Bengal, India, which has been facing water shortage problems for the past few years. The thematic layers considered in this study are: geomorphology, geology, drainage density, slope and aquifer transmissivity, which were prepared using IRS-1D imagery and conventional data. Different themes and their corresponding features were assigned proper weights based on their relative contribution to groundwater recharge in the area, and normalized weights were computed using the Saaty’s analytic hierarchy process (AHP). These thematic layers were then integrated in the GIS environment to delineate artificial recharge zones in the study area. The artificial recharge map thus obtained divided the study area into three zones, viz., ‘suitable,’ ‘moderately suitable’ and ‘unsuitable’ according to their suitability for artificial groundwater recharge. It was found that about 46% of the study area falls under ‘suitable’ zone, whereas 43% falls under the ‘moderately suitable’ zone. The western portion of the study area was found to be unsuitable for artificial recharge. The artificial recharge zone map of the study area was found to be in agreement with the map of mean groundwater depths over the area. Furthermore, forty possible sites for artificial recharge were also identified using RS and GIS techniques. Based on the available field information, check dams are suggested as promising artificial recharge structures. The results of this study could be used to formulate an efficient groundwater management plan for the study area so as to ensure sustainable utilization of scarce groundwater resources.  相似文献   

2.
Groundwater is one of the most valuable natural resources, which is an immensely important and dependable source of water supply in all climatic regions over the world. Groundwater is in demand in areas where surface water supply is inadequate and nonsexist in the Chhatna Block, Bankura district and is located on the eastern slope of Chotonagpur Plateau, which is mapped on 73 I/15, 73 I/16 and 73 M/3, and falls between latitude 23°10′23°30′N and longitude 86°47′87°02′E. It represents plain land and gentle slope, which is responsible for infiltration and groundwater recharge. The groundwater in this region is confined within the fracture zones and weathered residuum. The present investigation is, therefore, undertaken to delineate potential zones for groundwater development with the help of a remote-sensing study. IRS–LISS-III data along with other data sets, e.g., existing toposheets and field observation data, have been utilized to extract information on the hydrogeomorphic features which include valley fills, buried pediment moderate, buried pediment shallow and structural hills, lineament density contour and slope map of this hard rock terrain. The target of this study is to delineate the groundwater potential zones in Chhatna block, Bankura District, West Bengal. Satellite imagery, along with other data sets, has been utilized to extract information on the groundwater controlling features of this study area. Three features (hydrogeomorphology, slope, and lineaments) that influence groundwater occurrences were analyzed and integrated. All the information layers have been integrated through GIS analysis and the groundwater potential zones have been delineated. The weighted index overlay method has been followed to delineate groundwater potential zones. The results indicate that good to excellent groundwater potential zones are available in almost the entire block. The results show that there is good agreement between the predicted groundwater potential map and the existing groundwater borehole databases. The area is characterized by hard rock terrain—still due to the presence of planation surface along valley fills; it became the prospective zone. The area has been categorized into four distinct zones: excellent, good, fair and poor. Excellent groundwater potential zones constitute 30–35 % of the total block area; good groundwater potential zones occupy a majority of the block, covering approximately 55–60 % and the fair potential zones occupy about 10–15 % of the total block. Poor potential zones occupy a very insignificant portion (less than 1 %).  相似文献   

3.
《Applied Geochemistry》2000,15(4):403-413
In some areas of Bangladesh and West Bengal, concentrations of As in groundwater exceed guide concentrations, set internationally and nationally at 10 to 50 μg l−1 and may reach levels in the mg l−1 range. The As derives from reductive dissolution of Fe oxyhydroxide and release of its sorbed As. The Fe oxyhydroxide exists in the aquifer as dispersed phases, such as coatings on sedimentary grains. Recalculated to pure FeOOH, As concentrations in this phase reach 517 ppm. Reduction of the Fe is driven by microbial metabolism of sedimentary organic matter, which is present in concentrations as high as 6% C. Arsenic released by oxidation of pyrite, as water levels are drawn down and air enters the aquifer, contributes negligibly to the problem of As pollution. Identification of the mechanism of As release to groundwater helps to provide a framework to guide the placement of new water wells so that they will have acceptable concentrations of As.  相似文献   

4.
The occurrence of dental/skeletal fluorosis among the people in the study area provided the motivation to assess the distribution, severity and impact of fluoride contamination in groundwater of Bankura district at Simlapal block, West Bengal, India. To meet the desired objective, groundwater samples were collected from different locations of Laxmisagar, Machatora and Kusumkanali regions of Simlapal block at different depths of tube wells in both pre- and post-monsoon seasons. Geochemical results reveal that the groundwaters are mostly moderate- to hard-water type. Of total groundwater samples, 37% are situated mainly in relatively higher elevated region containing fluoride above 1.5 mg/L, indicating that host aquifers are severely affected by fluoride contamination. Machatora region is highly affected by fluoride contamination with maximum elevated concentration of 12.2 mg/L. Several symptoms of fluorosis among the different age-groups of people in Laxmisagar and Machatora areas are indicating consumption of fluoridated water for prolonged period. The groundwater samples were mainly Na–Ca–HCO3 type and rock dominance indicating the dissolution of minerals taking place. Ion exchange between OH? ion and F? ion present in fluoride-bearing mineral is the most dominant mechanism of fluoride leaching. High concentration of Na+ and HCO3 ? increases the alkalinity of the water, providing a favorable condition for fluoride to leach into groundwater from its host rocks and minerals.  相似文献   

5.
6.
A regional scale hydrogeochemical study of a ∼21,000-km2 area in the western Bengal basin shows the presence of hydrochemically distinct water bodies in the main semiconfined aquifer and deeper isolated aquifers. Spatial trends of solutes and geochemical modeling indicate that carbonate dissolution, silicate weathering, and cation exchange control the major-ion chemistry of groundwater and river water. The main aquifer water has also evolved by mixing with seawater from the Bay of Bengal and connate water. The isolated aquifers contain diagenetically altered water of probable marine origin. The postoxic main aquifer water exhibits overlapping redox zones (metal-reducing, sulfidic and methanogenic), indicative of partial redox equilibrium, with the possibility of oxidation in micro-scale environments. The redox processes are depth-dependent and hydrostratigraphically variable. Elevated dissolved As in the groundwater is possibly related to Fe(III) reduction, but is strongly influenced by coupled Fe–S–C redox cycles. Arsenic does not show good correlations with most solutes, suggesting involvement of multiple processes in As mobilization. The main river in the area, the Bhagirathi–Hoogly, is chemically distinctive from other streams in the vicinity and probably has little or no influence on deep groundwater chemistry. Arsenic in water of smaller streams (Jalangi and Ichamati) is probably introduced by groundwater discharge during the dry season.  相似文献   

7.
The first documented interpretation of the regional-scale hydrostratigraphy and groundwater flow is presented for a ~21,000-km2 area of the arsenic-affected districts of West Bengal [Murshidabad, Nadia, North 24 Parganas and South 24 Parganas (including Calcutta)], India. A hydrostratigraphic model demonstrates the presence of a continuous, semi-confined sand aquifer underlain by a thick clay aquitard. The aquifer thickens toward the east and south. In the south, discontinuous clay layers locally divide the near-surface aquifer into several deeper, laterally connected, confined aquifers. Eight 22-layer model scenarios of regional groundwater flow were developed based on the observed topography, seasonal conditions, and inferred hydrostratigraphy. The models suggest the existence of seasonally variable, regional, north–south flow across the basin prior to the onset of extensive pumping in the 1970s. Pumping has severely distorted the flow pattern, inducing high vertical hydraulic gradients across wide cones of depression. Pumping has also increased total recharge (including irrigational return flow), inflow from rivers, and sea water intrusion. Consequently, downward flow of arsenic contaminated shallow groundwater appears to have resulted in contamination of previously safe aquifers by a combination of mechanical mixing and changes in chemical equilibrium.  相似文献   

8.
Detailed geochemical analysis of groundwater beneath 1223 km2 area in southern Bengal Basin along with statistical analysis on the chemical data was attempted, to develop a better understanding of the geochemical processes that control the groundwater evolution in the deltaic aquifer of the region. Groundwater is categorized into three types: ‘excellent’, ‘good’ and ‘poor’ and seven hydrochemical facies are assigned to three broad types: ‘fresh’, ‘mixed’ and ‘brackish’ waters. The ‘fresh’ water type dominated with sodium indicates active flushing of the aquifer, whereas chloride-rich ‘brackish’ groundwater represents freshening of modified connate water. The ‘mixed’ type groundwater has possibly evolved due to hydraulic mixing of ‘fresh’ and ‘brackish’ waters. Enrichment of major ions in groundwater is due to weathering of feldspathic and ferro-magnesian minerals by percolating water. The groundwater of Rajarhat New Town (RNT) and adjacent areas in the north and southeast is contaminated with arsenic. Current-pumping may induce more arsenic to flow into the aquifers of RNT and Kolkata cities. Future large-scale pumping of groundwater beneath RNT can modify the hydrological system, which may transport arsenic and low quality water from adjacent aquifers to presently unpolluted aquifer.  相似文献   

9.
Birbhum district in West Bengal, India, is one of the most severely affected districts by fluoride-contaminated groundwater. Fluoride content as high as 20.4 mg/L has been reported. Several cases of fluoride-related disorder such as dental fluorosis and skeletal fluorosis have been reported to be endemic in the district. Proper management of groundwater is very crucial. This contribution has been carried out for delineating potential fluoride-contaminated zones (PFCZ) in Birbhum district with the implementation of weighted overlay analysis in GIS environment. Twelve different potentially influential environmental parameters are integrated and evaluated. The final output map was categorised into two subclasses, i.e. ‘low’ and ‘high’, where the low region represents fluoride concentration of 1.5 mg/L and below and the high region represents fluoride concentration above 1.5 mg/L. The outcome reveals that approximately 24.35% of the study area falls under PFCZ, whereas about 75.65% of the study area falls under the safe zone with respect to potential fluoride contamination. On validation of the PFCZ, the reported fluoride contamination data in groundwater shows an overall 87.50% accuracy in prediction via superimposition method and 89.06 and 85.85% success and prediction rates, respectively, when validated with success and prediction rates.  相似文献   

10.
The contamination of aquifers by fluoride and arsenic is a major cause of concern in several parts of India. A study has thus been conducted to evaluate the extent and severity of fluoride contamination and also its seasonal variability. Two blocks (Purulia-1 and Purulia-2) were considered for this purpose. Twenty groundwater samples (in each season) were collected from tube wells during the pre-monsoon and post-monsoon seasons. In addition to fluoride, groundwater samples were also analyzed for major cations, anions, and other trace elements. The concentration of fluoride shows significant seasonal variation and ranges between 0.94–2.52 and 0.25–1.43 mg/l during the pre-monsoon and post-monsoon seasons, respectively. In pre-monsoon season, more than 40% of the water samples show fluoride concentrations higher than the WHO limit. However, during the post-monsoon season, none of the groundwater sample shows fluoride concentrations higher than the WHO limit. Lesser concentration during the post-monsoon season is attributed to the dilution effect by the percolating rainwater, which has also been reflected in the form of a decrease in concentrations of other elements. The petrographic studies of the rock samples collected from the study area show that the rocks are mainly composed of plagioclase, orthoclase, and quartz with abundant biotite. The weathering and dissolution of biotite plays an important role in controlling the fluoride concentrations in the groundwater of the study area.  相似文献   

11.
Estimation of geohydrologic properties of fractured aquifers in hard crystalline and/or metamorphosed country rocks is a challenge due to the complex nature of secondary porosity that is caused by differential fracturing. Hydrologic potentiality of such aquifers may be assessed if the geological controls governing the spatial distribution of these fracture systems are computed using a software-based model. As an exemplar, the Precambrian metamorphics exposed in and around the Balarampur town of Purulia district, West Bengal (India) were studied to find out the spatial pattern and consistency of such fracture systems. Surfer and Statistica softwares were used to characterize these rock masses in terms of hydrological, structural and lithological domains. The technique is based on the use of hydraulically significant fracture properties to generate representative modal and coefficient of variance () of fracture datasets of each domain. The is interpreted to obtain the spatial variability of hydraulically significant fracture properties that, in turn, define and identify the corresponding hydrolithostructural domains. The groundwater flow estimated from such a technique is verified with the routine hydrological studies to validate the procedure. It is suggested that the hydrolithostructural domain approach is a useful alternative for evaluation of fracture properties and aquifer potentiality, and development of a regional groundwater model thereof.  相似文献   

12.
Three apparently disparate themes (groundwater, farmers and politics) interweave in this account of how groundwater-related policies in India have very little to do with the scarcity, depletion or quality of groundwater, and more to do with rural politics manifested, among other things, in terms of the presence or absence of farmer lobbies. Examples from two states of India, the water-abundant state of West Bengal and water-scarce state of Gujarat, were investigated using readily available data, analysis of the literature, interviews and fieldwork. In the case of West Bengal, although there is no pressing groundwater crisis, the government of West Bengal (GOWB) was able to successfully implement strict groundwater regulations along with a drastic increase in electricity tariff. More importantly, GOWB was able to implement these without any form of visible farmer protest, though these measures negatively affected farmer incomes. On the other hand, in Gujarat, where there is a real and grave groundwater crisis, the government of Gujarat has neither been able to implement strict groundwater regulations, nor has it been able to increase electricity tariff substantially. Thus, through the lens of ‘political ecology’ the contrasting case of these two Indian states is explained.
Aditi Mukherji (PhD Student)Email: Phone: +44-1223-477186
  相似文献   

13.
Momin  Hassan  Biswas  Rubia  Tamang  Chandrakala 《GeoJournal》2022,87(1):197-213
GeoJournal - The present study has been carried out to analyse and interpret the morphological changes and channel shifting along the Fulahar river in the Malda district. Fulahar river is one of...  相似文献   

14.
国际地球化学填图样品分析方法和数据对比   总被引:2,自引:0,他引:2  
姚文生  王学求  谢学锦 《地质通报》2011,30(7):1111-1118
以中国和世界发达国家或地区(欧洲、北美、澳大利亚与日本)过去10年内完成的或目前正在开展的全球性或国家性地球化学填图项目为例,总结了国际地球化学样品分析技术的新进展,并以中国实验室与欧洲实验室的分析数据的对比结果,剖析国际地球化学填图样品分析技术面临的挑战。研究表明:分析组成地壳所有元素的构想已被越来越多国家性、全球性地球化学填图项目所采纳;中国是世界上唯一具有填图样品76元素分析能力的国家;高水平的分析实验室(欧洲与中国)取得的数据大部分可以实现对比,但仍有10余个元素的分析数据存在明显偏差。实现所有分析元素数据的全球可对比,应是今后国际地球化学填图样品分析技术的主要发展方向。  相似文献   

15.
姚文生  王学求  谢学锦 《地质通报》2011,30(07):1111-1118
以中国和世界发达国家或地区(欧洲、北美、澳大利亚与日本)过去10年内完成的或目前正在开展的全球性或国家性地球化学填图项目为例,总结了国际地球化学样品分析技术的新进展,并以中国实验室与欧洲实验室的分析数据的对比结果,剖析国际地球化学填图样品分析技术面临的挑战。研究表明:分析组成地壳所有元素的构想已被越来越多国家性、全球性地球化学填图项目所采纳;中国是世界上唯一具有填图样品76元素分析能力的国家;高水平的分析实验室(欧洲与中国)取得的数据大部分可以实现对比,但仍有10余个元素的分析数据存在明显偏差。实现所有分析元素数据的全球可对比,应是今后国际地球化学填图样品分析技术的主要发展方向。  相似文献   

16.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

17.
13C solid-phase NMR and pyrolysis-chemical ionization mass spectrometry were used to characterize adsorbed organic material isolated on an XAD-2 macroreticular resin. Pyrolysis-chemical ionization mass spectrometry was used directly to fingerprint the organics sorbed to a titanium foil exposed in the same marine environment. The XAD-2 isolate was shown to be fractionated relative to the native material and contaminated with the isolation resin.  相似文献   

18.
Hydrogeochemical characteristics and elemental features of groundwater and core sediments have been studied to better understand the sources and mobilization process responsible for As-enrichment in part of the Gangetic plain (Barasat, West Bengal, India). Analysis of water samples from shallow tubewells (depth 24.3–48.5 m) and piezometer wells (depth 12.2–79.2 m) demonstrate that the groundwater is mostly the Ca-HCO3 type and anoxic in nature (mean EhSHE = 34 mV). Arsenic concentrations ranged from <10–538 μg/L, with high concentrations only present in the shallow to medium depth (30–50 m) of the aquifer along with high Fe (0.07–9.8 mg/L) and relatively low Mn (0.15–3.38 mg/L) as also evidenced in core sediments. Most groundwater samples contained both As(III) and As(V) species in which the concentration of As(III) was generally higher than that of As(V), exhibiting the reducing condition. Results show lower concentrations of NO3, SO4 and NO2 along with higher values of DOC and HCO3, indicating the reducing nature of the aquifer with abundant organic matter that can promote the release of As from sediments into groundwater. Positive correlations of As with Fe and DOC were also observed. The presence of DOC may actively drive the redox processes. This study revealed that reduction processes of FeOOH was the dominant mechanism for the release of As into the groundwater in this part of the Ganges Delta plain.  相似文献   

19.
An approach is presented for the evaluation of groundwater potential using remote sensing, geographic information system, geoelectrical, and multi-criteria decision analysis techniques. The approach divides the available hydrologic and hydrogeologic data into two groups, exogenous (hydrologic) and endogenous (subsurface). A case study in Salboni Block, West Bengal (India), uses six thematic layers of exogenous parameters and four thematic layers of endogenous parameters. These thematic layers and their features were assigned suitable weights which were normalized by analytic hierarchy process and eigenvector techniques. The layers were then integrated using ArcGIS software to generate two groundwater potential maps. The hydrologic parameters-based groundwater potential zone map indicated that the ‘good’ groundwater potential zone covers 27.14% of the area, the ‘moderate’ zone 45.33%, and the ‘poor’ zone 27.53%. A comparison of this map with the groundwater potential map based on subsurface parameters revealed that the hydrologic parameters-based map accurately delineates groundwater potential zones in about 59% of the area, and hence it is dependable to a certain extent. More than 80% of the study area has moderate-to-poor groundwater potential, which necessitates efficient groundwater management for long-term water security. Overall, the integrated technique is useful for the assessment of groundwater resources at a basin or sub-basin scale.  相似文献   

20.
The importance or otherwise of rice as an exposure pathway for As ingestion by people living in Bengal and other areas impacted by hazardous As-bearing groundwaters is currently a matter of some debate. Here this issue is addressed by determining the overall increased cancer risk due to ingestion of rice in an As-impacted district of West Bengal. Human target cancer health risks have been estimated through the intake of As-bearing rice by using combined field, laboratory and computational methods. Monte Carlo simulations were run following fitting of model probability curves to measured distributions of (i) As concentration in rice and drinking water and (ii) inorganic As content of rice and fitting distributions to published data on (i) ingestion rates and (ii) body weight and point estimates on bioconcentration factors, exposure duration and other input variables. The distribution of As in drinking water was found to be substantially lower than that reported by previous authors for As in tube wells in the same area, indicating that the use of tube well water as a proxy for drinking water is likely to result in human health risks being somewhat overestimated. The calculated median increased lifetime cancer risk due to cooked rice intake was 7.62 × 10−4, higher than the 10−4–10−6 range typically used by the USEPA as a threshold to guide determination of regulatory values and similar to the equivalent risk from water intake. The median total risk from combined rice and water intake was 1.48 × 10−3. The contributions to this median risk from drinking water, rice and cooking of rice were found to be 48%, 44% and 8%, respectively. Thus, rice is a major potential source of As exposure in the As-affected study areas in West Bengal and the most important exposure pathway for groups exposed to low or no As in drinking water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号