首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Passive treatment systems have become one of the most sustainable and feasible ways of remediating acid mine drainage (AMD). However, conventional treatments show early clogging of the porosity or/and coating of the reactive grains when high acidity and metal concentrations are treated. The performance of fine-grained reagents dispersed in a high porosity matrix of wood shavings was tested as an alternative to overcome these durability problems. The system consisted of two tanks of 3 m3 filled with limestone sand and wood shavings, and one tank of 1 m3 with caustic magnesia powder and wood shavings, separated by several oxidation cascades and decantation ponds. The system treated about 1.5 m3/day of AMD containing an average of 360 mg/L Fe, 120 mg/L Al, 390 mg/L Zn, 10 mg/L Cu, 300 μg/L As and 140 μg/L Pb, a mean pH of 3.08 and a net acidity of 2500 mg/L as CaCO3 equivalent. The water reached pH 5 and 6 in the first and second limestone tanks, respectively (suitable to remove trivalent metals); and pH 8–9 in the MgO tank (suitable to remove divalent metals). After 9 months of operation, the system achieved an average removal of 100% Al, Cu, As, Pb, more than 70% Fe, about 25% Zn and 80% acidity. Goethite, schwertmannite, hydrobasaluminite, amorphous Al(OH)3 and gypsum were the main precipitates in the two limestone tanks. Precipitation of divalent metals (Fe (II), Zn, and traces of Cd, Ni and Co) were complete inside the third tank of MgO, but preferential flow along the walls was responsible for its low treatment performance. Goethite, gypsum, Zn-schulenbergite and sauconite are the crystalline solid phases identified in the MgO tank.  相似文献   

2.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

3.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

4.
Smelting slags associated with base-metal vein deposits of the Sierra Almagrera area (SE Spain) show high concentrations of Ag (<5–180 ppm), As (12–750 ppm), Cu (45–183 ppm), Fe (3.2–29.8%), Pb (511–2150 ppm), Sb (22–620 ppm) and Zn (639–8600 ppm). The slags are mainly composed of quartz, fayalite, barite, melilite, celsian, pyrrhotite, magnetite, galena and Zn–Pb–Fe alloys. No glassy phases were detected. The following weathering-related secondary phases were found: jarosite–natrojarosite, cotunnite, cerussite, goethite, ferrihydrite, chalcanthite, copiapite, goslarite, halotrichite and szomolnokite. The weathering of slag dumps near the Mediterranean shoreline has contaminated the soils and groundwater, which has caused concentrations in groundwater to increase to 0.64 mg/L Cu, 40 mg/L Fe, 0.6 mg/L Mn, 7.6 mg/L Zn, 5.1 mg/L Pb and 19 μg/L As. The results of laboratory leach tests showed major solubilization of Al (0.89–12.6 mg/L), Cu (>2.0 mg/L), Fe (0.22–9.8 mg/L), Mn (0.85–40.2 mg/L), Ni (0.092–2.7 mg/L), Pb (>2.0 mg/L) and Zn (>2.5 mg/L), and mobilization of Ag (0.2–31 μg/L), As (5.2–31 μg/L), Cd (1.3–36.8 μg/L) and Hg (0.2–7 μg/L). The leachates were modeled using the numerical code PHREEQC. The results suggested the dissolution of fayalite, ferrihydrite, jarosite, pyrrhotite, goethite, anglesite, goslarite, chalcanthite and cotunnite. The presence of secondary phases in the slag dumps and contaminated soils may indicate the mobilization of metals and metalloids, and help to explain the sources of groundwater contamination.  相似文献   

5.
Many waters sampled in Yellowstone National Park, both high-temperature (30–94 °C) and low-temperature (0–30 °C), are acid–sulfate type with pH values of 1–5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH < 2.7. Field pH measurements were predominantly used because the charge imbalance was <±10%. When the charge imbalance was generally >±10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values <3. The highest SO4 concentrations, in the thousands of mg/L, result from evaporative concentration at elevated temperatures as shown by the consistently high δ18O values (−10‰ to −3‰) and a δD vs. δ18O slope of 3, reflecting kinetic fractionation. Low SO4 concentrations (<100 mg/L) for thermal waters (>350 mg/L Cl) decrease as the Cl concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid–sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone’s acid waters but have not been observed in acid rock drainage of the same pH.  相似文献   

6.
This paper demonstrates the use of dissolution-rate data obtained in the laboratory to indicate the potential quality of effluent from a field-scale oxic limestone drain (OLD) treatment system for neutralization of dilute acidic mine drainage (AMD). Effluent from the Reevesdale Mine South Dip Tunnel, a large source of AMD and base flow to the Wabash Creek and Little Schuylkill River in the Southern Anthracite Coalfield of east-central Pennsylvania, is representative of AMD with low concentrations but high loadings of dissolved Fe, Al and other metals because of a high flow rate. In January 2003, rapid neutralization of the AMD from the Reevesdale Mine was achieved in laboratory tests of its reaction rate with crushed limestone in closed, collapsible containers (Cubitainers). The tests showed that net-alkaline effluent could be achieved with retention times greater than 3 h and that effluent alkalinities and associated dissolution rates were equivalent for Fe(OH)3-coated and uncoated limestone. On the basis of the laboratory results, a flushable OLD containing 1450 metric tons of high-purity calcitic limestone followed by two 0.7-m deep wetlands were constructed at the Reevesdale Mine. During the first year of operation, monthly data at the inflow, outflow and intermediate points within the treatment system were collected (April 2006–2007). The inflow to the treatment system ranged from 6.8 to 27.4 L/s, with median pH of 4.7, net acidity of 9.1 mg/L CaCO3, and concentrations of dissolved Al, Fe and Mn of 1.0, 1.9 and 0.89 mg/L, respectively. The corresponding effluent from the OLD had computed void-volume retention times of 4.5–18 h, with median pH of 6.6, net acidity of −93.2 mg/L CaCO3, and concentrations of dissolved Al, Fe and Mn of <0.1, 0.08 and 0.52 mg/L, respectively. The wetlands below the OLD were effective for retaining metal-rich solids flushed at monthly or more frequent intervals from the OLD, but otherwise had little effect on the effluent quality. During the first year of operation, approximately 43 metric tons of limestone were dissolved and 2 metric tons of Al, Fe and Mn were precipitated within the OLD. However, because of the accumulation of these metals within the OLD and possibly other debris from the mine, the effectiveness of the treatment system declined. Despite the installation of a flush-pipe network at the base of the OLD to remove precipitated solids, the limestone bed clogged near the inflow. Consequently, a large fraction of the AMD bypassed the treatment system. To promote flow through the OLD, the flush pipes were open continuously during the last 4 months of the study; however, this effluent was only partially treated because short-circuiting through the pipes decreased contact between the effluent and limestone. A reconfiguration of the flow path through the limestone bed from horizontal to vertical upward could increase the limestone surface area exposed to the metal-laden influent, increase the cross-sectional area perpendicular to flow, decrease the flow path for solids removal, and, consequently, decrease potential for clogging.  相似文献   

7.
Mine tailings are ubiquitous in the landscapes of mined areas. Metal solubilities were compared in two chemically distinct mine tailings from the old Mining District of Cartagena-La Unión (SE Spain). One of the tailings was acidic (pH 3.0) with 5400 mg/kg Zn, 1900 mg/kg As and 7000 mg/kg Pb. The other was neutral (pH 7.4) with 9100 mg/kg Zn, 5200 mg/kg Pb and 350 mg/kg As. In samples from the acidic tailings, more than 15% of the Zn and 55% of the Cd were extractable with 0.1 M NaNO3, and distilled water. In the neutral tailings, using the same reagents, less than 1% of the metals were extractable. A sequential extraction procedure revealed that the sum of the residual and the Fe oxide fractions of Cu, Zn and Pb comprised 80–95% in the acidic tailings and 70–90% in the neutral tailings. The acidic mine tailings had a higher metal solubility, resulting in more metal leaching in the short-term, but also a higher fraction of inert metal. In contrast, in the neutral tailings, the metals were evenly distributed between, oxides and the residual fraction. This implies lower metal mobility in the short-term, but that metal mobility may increase in the long-term. When applied to mine tailings, sequential extractions may provide misleading results because the strong cation exchange capacity of some extractants may induce pH changes and thereby significantly change metal solubility.  相似文献   

8.
9.
The authors determine the composition of a river that is impacted by acid-mine drainage, evaluate dominant physical and geochemical processes controlling the composition, and assess dissolved metal speciation and toxicity using a combination of laboratory, field and modeling studies. Values of pH increase from 3.3 to 7.6 and the sum of dissolved base metal (Cd + Co + Cu + Ni + Pb + Zn) concentrations decreases from 6270 to 100 μg/L in the dynamic mixing and reaction zone that is downstream of the river’s confluence with acid-mine drainage. Mixing diagrams and PHREEQC calculations indicate that mixing and dilution affect the concentrations of all dissolved elements in the reach, and are the dominant processes controlling dissolved Ca, K, Li, Mn and SO4 concentrations. Additionally, dissolved Al and Fe concentrations decrease due to mineral precipitation (gibbsite, schwertmannite and ferrihydrite), whereas dissolved concentrations of Cd, Co, Cu, Ni, Pb and Zn decrease due to adsorption onto newly formed Fe precipitates.  相似文献   

10.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

11.
The quartz veins containing scheelite from Fonte Santa mine cut the Lower Ordovician quartzites. A muscovite–biotite granite (G1) and a muscovite granite (G2), both S-type, crop out close to the Fonte Santa mine and are related to the Moncorvo–Bemposta shear zone. The most altered samples of G2 show intense muscovitization and microclinization and contain chlorite, columbite–tantalite, wolframite, W-ixiolite and Fe-oxides. The tin-bearing granites contain 18 ppm (G1) and 73 ppm (G2) Sn. The most altered samples of G2 correspond to a tungsten granite. The quartz veins contain muscovite, chlorite, tourmaline, scheelite, pyrrhotite, pyrite, sphalerite, chalcopyrite, galena, arsenopyrite, iron oxides, Fe sulfates, phosphates of Pb, Fe and Al. The Fonte Santa mine area was exploited for W between 1942 and 1982. At the end of November 2006, a flood event damaged the tailings dam of Fonte Santa mine, releasing contaminated material and increasing contaminant levels in water within the area of influence of the mine. The waters related to the Fonte Santa mine are poorly mineralized, with electrical conductivity of < 965 µS/cm, and of a mixed type or HCO3 and SO42− types. Most pH values (5.0−8.5) indicate that there is no significant acidic drainage in the region, as found in other areas. More acidic values (pH = 3.4) were found in the mine's lagoon. Waters associated with mineralized veins and old mine activities have Fe and Mn concentrations that forbid their use for human consumption and agriculture. Natural Na, Mg and K water contents are associated with the alteration of albite, chlorite and muscovite of country rock, while Ca with the W-bearing quartz veins. Weathering agents are carbonic and sulphuric acids and the latter has a strong influence in areas draining fine-grained mine tailings.  相似文献   

12.
13.
The Odiel river Basin is heavily affected by acid mine drainage (AMD) from the sulphide mining areas in the Iberian Pyrite Belt (IPB). A thorough study has been conducted along this fluvial system, monitoring the seasonal influence on the pollution level and its hydrochemical characteristics. From 2002 to 2006, surface water samples were collected at 91 different points throughout the Odiel river Basin and analyzed by field and laboratory methods for dissolved metals and metalloids. Acid mine drainage affects 37% of the length of the drainage network, which shows a great diversity of geochemical conditions as well as significant variations through the hydrological year. Unaffected streams show different water types depending on the lithological substrate and the marine aerosol influence. Mean concentrations in the contaminated streams are very high: 231 mg/L of Fe, 135 mg/L of Al, 56 mg/L of Zn, 16 mg/L of Cu, etc. Four types of contaminated streams were recognized based on hydrochemical and physicochemical characteristics. There are important seasonal variations depending on the precipitation regimen, level of pollution and proximity to the AMD sources. In the more contaminated samples the M/Fe ratio (M = metals other than Fe) decreases during the summer season. Slightly contaminated samples show an inverse evolution as this ratio increases in spring and summer due to substantial Fe precipitation. A recomparison of contaminant loads suggests that the Odiel river Basin (including the Tinto river) accounts for 15% of the global gross flux of dissolved Zn and 3% of the global gross flux of dissolved Cu transported by rivers into the ocean.  相似文献   

14.
Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu–Pb smelter (1907–1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963–1970) and (iii) granulated Cu smelting slags (1980–2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97–18.4 wt.%), Cu (0.49–12.2 wt.%), Zn (2.82–12.09 wt.%), Cd (12–6940 mg/kg), As (930–75,870 mg/kg) and Sb (67–2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu–Fe and Cu–Cr oxides, delafossite–mcconnellite phases and Ca–Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca–Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu–Pb–(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that complex arsenates are the most important solubility controls for metals and metalloids. Furthermore, these phases can readily dissolve during the rainy season (October to March) and flush significant amounts of As, Pb and Cu into the environment in the vicinity of slag dumps.  相似文献   

15.
Vertical flow cells (VFCs) are key components of passive acid mine drainage (AMD) treatment systems and require organic substrates that create anaerobic conditions and encourage bacterial sulfate reduction. In the high elevation desert of Potosí, Bolivia, the low productivity landscape limits the availability of sustainable and economical organic substrates. Locally available brewery waste, llama manure, and cow manure were evaluated as potential VFC substrates in a preliminary laboratory fed-batch study to assist in passive treatment system design. Two abandoned AMD discharges were collected from Cerro Rico de Potosí. Discharge A had an initial pH of 2.96, specific conductance of 3.31 mS/cm, and acidity of 1,350 mg/L as CaCO3 equivalent. Discharge B had an initial pH of 3.85, specific conductance of 1.87 mS/cm, and acidity of 1,000 mg/L as CaCO3 equivalent. Triplicate fed-batch reactors were set up in 1-L cubitainers with each potential substrate exposed to each AMD, yielding a total of 18 reactors exposed for 9 days and sampled two times for anions and dissolved metals. Cow manure reactors exhibited the greatest pH and alkalinity increases. Cd, Co, Fe, Mn, Ni, Pb, and Zn decreased in all reactors. SO4 concentrations only decreased in brewery waste reactors. However, SO4 reducing bacteria was higher for cow manure reactors. Results suggest that llama and cow manure are the more labile substrates, with llama manure being the most affordable. Brewery waste could be a suitable less-labile long-term substrate amendment. However, longer-term studies are needed to determine the optimum VFC substrate mixture in this unique circumstance.  相似文献   

16.
This paper presents the results of extensive field trials measuring rates of Fe(II) oxidation at a number of Fe-bearing mine drainage discharges in the UK. Batch experiments were carried out with samples taken at regular intervals and Fe(II) concentration determined spectrophotometrically using 2′2-bipyridyl as the complexing agent. Initial concentrations for Fe(II) were 5.65-76.5 mg/L. Temperature, pH and dissolved O2 (DO) were logged every 10 s, with pH at the start of the experiments in the range 5.64-6.95 and alkalinity ranging from 73 to 741 mg/L CaCO3 equivalent. A numerical model based on a fourth order Runge-Kutta method was developed to calculate values for k1, the rate constant for homogeneous oxidation, from the experimental data. The measured values of pH, temperature, [Fe(II)] and DO were input into the model with resulting values for k1 found to be in the range 2.7 × 1014-2.7 × 1016 M−2 atm−1 min−1. These values for k1 are 1-3 orders of magnitude higher than previously reported for laboratory studies at a similar pH. Comparison of the observed Fe(II) oxidation rates to data published by other authors show a good correlation with heterogenous oxidation rates and may indicate the importance of autocatalysis in these systems. These higher than expected rates of Fe oxidation could have a significant impact on the design of treatment schemes for the remediation of mine drainage and other Fe-bearing ground waters in the future.  相似文献   

17.
Coal mine rejects and sulfide bearing coals are prone to acid mine drainage (AMD) formation due to aqueous weathering. These acidic effluents contain dissolved trace and potentially harmful elements (PHEs) that have considerable impact on the environment. The behavior of these elements in AMD is mainly controlled by pH. The focus of the present study is to investigate aqueous leaching of mine rejects for prediction of acid producing potential, rates of weathering, and release of PHEs in mine drainage. Mine reject (MR) and coal samples from the active mine sites of Meghalaya, India typically have high S contents (1.8–5.7% in MR and 1.7–4.7% in coals) with 75–90% of the S in organic form and enrichment of most of the PHEs in rejects. Aqueous kinetic leaching experiments on mine rejects showed high acid producing potential and release of trace and potentially harmful elements. The elements (Sb, As, Cd, Cr, Co, Cu, Pb, Mn, Ni, V and Zn) in mine sample leachates are compared with those in mine waters. The concentrations of Al, Si, P, K, Ti, Mn, Fe, Co, Ni, Cu, Zn and Pb are found to increase with leaching time and are negatively correlated with pH of the solution. The processes controlling the release of these elements are acid leaching, precipitation and adsorption. The critical loads of PHEs in water affected by AMD are calculated by comparing their concentrations with those of regulatory levels. The Enrichment Factors (EFs) and soil pollution indices (SPIs) for the elements have shown that PHEs from coal and mine reject samples are mobilized into the nearby environment and are enriched in the associated soil and sediment.  相似文献   

18.
Tidal inundation was restored to a severely degraded tropical acid sulfate soil landscape and subsequent changes in the abundance and fractionation of Al, Fe and selected trace metals were investigated. After 5 a of regular tidal inundation there were large decreases in water-soluble and exchangeable Al fractions within former sulfuric horizons. This was strongly associated with decreased soil acidity and increases in pH, suggesting pH-dependent immobilisation of Al via precipitation as poorly soluble phases. The water-soluble fractions of Fe, Zn, Ni and Mn also decreased. However, there was substantial enrichment (2–5×) of the reactive Fe fraction (FeR; 1 M HCl extractable) near the soil surface, plus a closely corresponding enrichment of 1 M HCl extractable Cr, Zn, Ni and Mn. Surficial accumulations of Fe(III) minerals in the inter-tidal zone were poorly crystalline (up to 38% FeR) and comprised mainly of schwertmannite (Fe8O8(OH)6SO4) with minor quantities of goethite (α-FeOOH) and lepidocrocite (γ-FeOOH). These Fe (III) mineral accumulations provide an effective substrate for the adsorption/co-precipitation and accumulation of trace metals. Arsenic displayed contrary behaviour to trace metals with peak concentrations (∼60 μg g−1) near the redox minima. Changes in the abundance and fractionation of the various metals can be primarily explained by the shift in the geochemical regime from oxic–acidic to reducing-circumneutral conditions, combined with the enrichment of reactive Fe near the soil surface. Whilst increasing sequestration of trace metals via sulfidisation is likely to occur over the long-term, the current abundance of reactive Fe near the sediment–water interface favours a dynamic environment with respect to metals in the tidally inundated areas.  相似文献   

19.
Different downstream variation patterns were observed for a range of bed sediment-borne metals (aqua regia-extractable fraction) in a subtropical stream system receiving acid mine drainage. Mine-originated Fe tended to be deposited in the acidic (mean pH < 4.9) upstream reach in forms of goethite and/or hematite. In contrast, other metals tended to be transported farther downstream and settled in a low-gradient reach with high pH (mean pH > 5.6). The peak of sediment-borne Al, Be, Ca, Cd, Co, Cu, La, Mn, Ni and Zn corresponded very well with the peak of the sediment-borne organic matter, suggesting a close association between the water-borne organic colloids and the inorganic metal oxides/hydroxides during their transport. The marked increase in the sediment-borne Al and Pb started more upstream than the other metals, suggesting that the water-borne Al and Pb were more susceptible to pH rise-induced precipitation, as compared to the other metals. It appeared that the organic colloids played no important role in Pb transport and settlement. The iron precipitates had a limited role to play in affecting the transport and fates of other metals since they were predominantly formed and deposited in the acidic reach, which made them incapable of scavenging cationic metals by co-precipitation or adsorption.  相似文献   

20.
A series of experiments was conducted to better understand the bacterial influence on the release of trace metals during oxidation of sphalerite mineral and element cycles in acid mine drainage (AMD) systems. Batch experiments were carried out as biotic and abiotic control at pH 3. Acidithiobacillus ferrooxidans, sulfur and Fe(II) oxidizer, was used in the biotic sphalerite experiment. The abiotic control experiment was run without adding the bacteria. The release behavior of six trace metals (As, Cd, Co, Pb, Cu and Mn), Fe and Zn were determined during the period of 54 days. Compared to the abiotic experiments, enhanced oxidation of sphalerite by bacteria produced high sulfate (~2,000 mg/L) and Fetot (139 mg/L) along with the low pH (<2.3). Consistent with this, the concentration of trace metals (As, Cd, Co, Pb, Cu and Mn) was significantly higher in the biotic experiments than those in the abiotic experiments. Results indicate that the distributions of Co and Cd in both biotic and abiotic experiments are directly related to the sphalerite dissolution whereas Pb, Cu distribution shows no strong relation to sphalerite dissolution especially in the abiotic experiments. Pb distribution in the solution appears to be controlled by pH-dependent solubility. Approximately 80% of the trace metals were removed from the solution at the end of the biotic experiments along with biologically induced Fe precipitation. Experimental results showed that bacteria play major role not only in the release of trace metal from sphalerite but also in controlling concentration of the metals in the solution by producing Fe-oxyhydroxides. The study suggest that in order to develop an effective rehabilitation strategy for AMD, it is necessary to understand bio/geochemical processes governing mobilization and deposition of trace metals in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号