首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
《Applied Geochemistry》2006,21(11):1924-1939
The Idrija Mine, the second largest Hg mine in the world, ceased operation in 1995, but still delivers large quantities of Hg downstream including into the northern Adriatic Sea, 100 km away. Transformation of Hg species in sediment in sites over 60 km from the mine, including marine sites in the Adriatic Sea, was measured to determine the ability of the system to transform and mobilize Hg and to produce methylmercury (MeHg). Cores from a freshwater impoundment, a brackish estuarine site, and three marine sites in the Gulf of Trieste were sectioned anaerobically, and Hg methylation and MeHg demethylation activities determined using radio-techniques (203Hg for methylation and 14C-MeHg for demethylation). Total and dissolved Hg and MeHg were determined as were other geochemical parameters. In addition, rates of SO4 reduction were determined in marine sediment using a 35S technique. Mercury was readily methylated and demethylated at all sites. Marine sediment was investigated in winter and summer with rates of Hg transformation and SO4 reduction corresponding only in winter. Methylation of Hg in summer displayed subsurface peaks that may have been influenced by bioturbation. Total Hg and MeHg were most abundant in the freshwater, estuarine, and near-shore marine sites, but dissolved pore water Hg and MeHg were highest in the estuarine region where S cycling appeared ideal for the mobilization of Hg. The impoundment sediment also seemed to be a ‘hotspot’ of Hg transformations. MeHg demethylation occurred via the oxidative demethylation pathway (CO2 produced from MeHg), except in surficial sediment offshore in the Gulf during winter, where sediment was more oxidizing and significant amounts of CH4 were liberated during MeHg degradation via reductive demethylation. The CH4 formation was likely due to an increased influence from the expression of MeHg degradative enzymes encoded by the mer detoxification bacterial genetic system. The freshwater site also liberated CH4 from MeHg, but it appeared to be due to oxidative demethylation by methanogenic bacteria.  相似文献   

2.
《Applied Geochemistry》2006,21(11):1999-2009
The Carson River flows in a closed basin system and the total flow of the river water decreases downstream due to both evaporation and consumptive uses. This river system is fed primarily by snow pack in the Sierra Nevada during the winter, which flows down gradient following melting in spring and summer. Water loss through evaporation in the Carson River results in a downstream buildup of conservative elements such as Cl and certain oxyanion forming elements including Se, Mo and W, which are known to interfere with the transformation of Hg within the S cycle. In addition to these naturally occurring hydrologic processes and the resulting affects on water chemistry, the Carson River Basin has been historically impacted by Au and Ag mining that used Hg amalgamation techniques. Contamination of Hg in the Carson River system is now well documented and published Hg concentrations in different environmental compartments are extremely high. In this study, hydrologically driven changes in water chemistry of the river system and the resulting effects on Hg cycling were examined. Results show that periods of low water flow correspond to high water pH (up to 8.3), relatively high concentrations of oxyanion forming elements (e.g., As, Se, Mo and W), and low Hg methylation potential in sediment. In contrast, periods of high flow bring about dilution, which results in lower pH (∼7), lower concentrations of oxyanion forming elements, but higher Hg methylation potential. Overall, changes in flow regimes likely affect rates of methyl-Hg (MeHg) production through a combination of factors such as high pH, which favors MeHg demethylation, and the occurrence of relatively high concentrations of Group VI oxyanions that could interfere with microbial SO4 reduction and MeHg production.  相似文献   

3.
Due to the poor preservation of old peat formations and the limited research developed on them, the contribution of peat oxidation to the global C cycle at geological scales is poorly understood. Iron duricrusts containing abundant well-preserved plant structures have been reported above Humic Gleysols in the Uberaba Plateau (Brazil). We show that the iron accumulation results from an in-situ impregnation of peat, fast enough to preserve the plant structures. The formation of iron oxides results from two processes: precipitation in the pores and C/Fe replacement. The iron duricrusts were probably triggered by oxidation of the peatland following dry climatic events during the last 50 kyr. The large amount of iron dissolved in peatland waters was immobilized contemporaneously with the destruction of organic matter. The oxidation of organic matter from the lower peat, dated at ca 24–27 kyr BP, may have released between 0.08 and 2.26 kg CO2 m−2 yr−1 in the atmosphere. These rates are in a good agreement with present-day measurements of CO2 release from drained peatlands. Although peatland formation has been identified as a significant contributor to the global CO2 uptake, our findings suggest that natural peatland oxidation should also be considered as a source of atmospheric CO2 during past climate change.  相似文献   

4.
The role of the major biogeochemical processes in Hg cycling at the sediment–water interface was investigated in the Grado Lagoon (Northern Adriatic Sea). This wetland system has been extensively contaminated from the Idrija Hg Mine (Slovenia) through the Isonzo River suspended load carried by tidal fluxes. Three approaches were used to study the sediment–water exchange of total Hg (THg), methylmercury (MeHg), reactive Hg (RHg) and dissolved gaseous Hg (DGHg): (1) estimation of diffusive fluxes from porewater and overlying water concentrations, (2) measurements of benthic fluxes using a deployed light benthic chamber in situ and (3) measurements of benthic fluxes during oxic–anoxic transition with a laboratory incubation experiment. The THg solid phase, ranging between 9.5 and 14.4 μg g−1, showed slight variability with depth and time. Conversely, MeHg contents were highest (up to 21.9 ng g−1) at the surface; they tended to decrease to nearly zero concentration with depth, thus suggesting that MeHg production and accumulation occur predominantly just below the sediment–water interface. Porewater MeHg concentrations (0.9–7.9 ng L−1, 0.15–15% of THg) varied seasonally; higher contents were observed in the warmer period. The MeHg diffusive fluxes (up to 17 ng m−2 day−1) were similar to those in the nearby Gulf of Trieste [Covelli, S., Horvat, M., Faganeli, J., Brambati, A., 1999. Porewater distribution and benthic flux of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuar. Coast. Shelf Sci. 48, 415–428], although the lagoon sediments contained four-fold higher THg concentrations. Conversely, the THg diffusive fluxes in the lagoon (up to 110 ng m−2 day−1) were one- to two-fold higher than those previously estimated for the Gulf of Trieste. The diurnal MeHg benthic fluxes were highest in summer at both sites (41,000 and 33,000 ng m−2 day−1 at the fishfarm and in the open lagoon, respectively), thus indicating the influence of temperature on microbial processes. The diurnal variations of dissolved THg and especially MeHg were positively correlated with O2 and inversely with DIC, suggesting an important influence of benthic photosynthetic activities on lagoon benthic Hg cycling, possibly through the production of organic matter promptly available for methylation. The results from the dark chamber incubated in the laboratory showed that the regeneration of dissolved THg was slightly affected by the oxic–anoxic transition. Conversely, the benthic flux of MeHg was up to 15-fold higher in sediments overlain by O2 depleted waters. In the anoxic phase, the MeHg fluxes proceeded in parallel with Fe fluxes and the methylated form reached approximately 100% of dissolved THg. The MeHg is mostly released into overlying water (mean recycling efficiency of 89%) until the occurrence of sulphide inhibition, due to scavenging of the available Hg substrate for methylation. The results suggest that sediments in the Grado Lagoon, especially during anoxic events, should be considered as a primary source of MeHg for the water column.  相似文献   

5.
6.
Karen A. Merritt  Aria Amirbahman   《Earth》2009,96(1-2):54-66
Considerable recent research has focused on methylmercury (MeHg) cycling within estuarine and coastal marine environments. Because MeHg represents a potent neurotoxin that may magnify in marine foodwebs, it is important to understand the mechanisms and environmental variables that drive or constrain methylation dynamics in these environments. This critical review article explores the mechanisms hypothesized to influence aqueous phase and sediment solid phase MeHg concentrations and depth-specific inorganic Hg (II) (Hgi) methylation rates (MMR) within estuarine and coastal marine environments, and discusses issues of terminology or methodology that complicate mechanism-oriented interpretation of field and laboratory data. Mechanisms discussed in this review article include: 1) the metabolic activity of sulfate reducing bacteria (SRB), the microbial group thought to dominate mercury methylation in these environments; 2) the role that Hgi concentration and/or speciation play in defining depth-specific Hgi methylation rates; and 3) the depth-dependent balance between MeHg production and consumption within the sedimentary environment. As discussed in this critical review article, the hypothesis of SRB community control on the Hgi methylation rate in estuarine and coastal marine environments is broadly supported by the literature. Although Hgi speciation, as a function of porewater inorganic sulfide and/or dissolved organic matter concentration and/or pH, may also play a role in observed variations in MMR, the nature and function of the controlling ligand(s) has not yet been adequately defined. Furthermore, although it is generally recognized that the processes responsible for MeHg production and consumption overlap spatially and/or kinetically in the sedimentary environment, and likely dictate the extent to which MeHg accumulates in the aqueous and/or sediment solid phase, this conceptual interpretation requires refinement, and would benefit greatly from the application of kinetic modeling.  相似文献   

7.
San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as )Nd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4Dž.5 ppb) and А.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 252 that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.  相似文献   

8.
9.
In this paper, the relationship between sulfate reduction potential and mercury methylation potential was studied in the Aha, Baihua and Hongfeng reservoirs from Guiyang City. The methylmercury (MeHg) concentrations of lake water in the Aha Reservoir were greatly elevated as compared to those of the Hongfeng and Baihua reservoirs, which was correlated with its distinctly high SRB abundance, SO42-, and S2- concentrations. Among the three reservoirs, however, the highest MeHg was observed in in the top several centimenters of pore water profile in the Hongfeng Reservoir where the lowest S2- in pore water occurred. The distributions of MeHg in lake water and pore water showed the highest methylation potential occurred at water-sediment surface for the Aha Reservoir and the in the top several centimenters of sediments for the Hongfeng Reservoir. It is guessed that the highest mercury methylation only occurs at the sites with certain sulfide concentrations.  相似文献   

10.
Porewater samples were obtained on five occasions during spring, summer and fall by in situ dialysis from three sites of a large freshwater wetland situated along the St. Lawrence River. These samples were analysed for total dissolved mercury ([Hg]T) and methylmercury ([MeHg]) concentrations and for complementary variables including dissolved sulfate, sulfide and elemental sulfur concentrations. Sediment cores were obtained on three occasions from one of these sites for the determination of total mercury ({Hg}T) and methylmercury ({MeHg}) concentration as well as mercury methyltransferase (HgMT) activity profiles. {MeHg} and HgMT activity varied with time and sediment depth. The porewater [Hg]T and [MeHg] depth profiles varied with time and among sites. Modeling the porewater [MeHg] profiles with a one-dimensional reaction-transport equation allowed identification of the sediment depths where MeHg is produced or consumed, as well as an estimate of the net in situ MeHg production rates in the sediments. The model-predicted depths of MeHg production, as well as the sulfate concentration and the HgMT activity depth distributions are all consistent with the involvement of sulfate reducing bacteria in the production of MeHg.  相似文献   

11.
To understand the geochemical cycle of Hg in hypereutrophic freshwater lake, two sampling campaigns were conducted in Lake Taihu in China during May and September of 2009. The concentrations of unfiltered total Hg (unfTHg) were in the range of 6.8–83 ng L−1 (28 ± 18 ng L−1) in the lake water and total Hg in the sediment was 12–470 ng g−1, both of which are higher than in other background lakes. The concentration of unfTHg in ∼11% of the lake water samples exceeded the second class of the Chinese environmental standards for surface water of 50 ng L−1 (GB 3838-2002), indicating that a high ecological risk is posed by the Hg in Lake Taihu. However, the concentrations of unfiltered total MeHg (unfMeHg) were relatively low in the lake water (0.14 ± 0.05 ng L−1, excluding two samples with 0.81 and 1.0 ng L−1). Lake sediment MeHg varied from 0.2–0.96 ng g−1, with generally low ratios of MeHg/THg of <1%. The low concentrations of TMeHg in the lake water may have resulted from a strong uptake by the high primary productivity and the demethylation of MeHg in oxic conditions. In addition, contrary to the results of previous research conducted in deep-water lakes and reservoirs, the low concentrations of MeHg and low ratio of MeHg/THg in the lake sediment indicates that the net methylation of Hg was not accelerated by the elevated organic matter load created by the eutrophication of Lake Taihu. The results also showed that sediments were a source of THg and MeHg in the water. Higher diffusion fluxes of THg and MeHg may be partly responsible for the higher concentrations of THg in the lake water in May, 2009.  相似文献   

12.
Reoxidation of S stored in lowlands after summer droughts has been reported to be responsible for the excess SO4 export observed in many catchments in south central Ontario. Stable S isotopes can be used to identify the source of SO4 export in stream water, and are particularly well suited to evaluating zones of dissimilatory SO4 reduction (DSR) and the contribution of oxidation of reduced S species to stream SO4. The Plastic Lake-1 (PC1) stream drains an upland coniferous forest and then passes through a Sphagnum-dominated swamp before discharging to Plastic Lake. Measurements of SO4 fluxes and isotope ratios were used to determine the source of net SO4 export and the contribution of redox processes to S retention and export in the upland and wetland, respectively. Mass balance budgets for the years 1999/00 and 2000/01, which had comparatively wet summers, indicated that the upland part of the catchment consistently exported SO4 in excess of bulk deposition inputs. In contrast, mass budget calculations for the swamp indicated a net retention of 3 and 2 g S-SO4/m2 of wetland area, in 1999/00 and 2000/01 respectively. Higher δ34SO4 ratios and lower SO4 concentrations in the swamp outflow (average +8.6 ± 2.6‰; 1.5 ± 0.6 mg S-SO4/L) compared to the inflow draining the upland (+5.4 ± 0.7‰; 2.4 ± 0.3 mg S-SO4/L) indicated that DSR was at least partly responsible for net SO4 retention in the swamp. Isotope values in upland stream water (+5.7 ± 0.7‰) were only slightly higher than values in bulk deposition (average +5.1 ± 0.6‰) and soil leachate (+4.4 ± 0.4‰) over the 2-year period of study. Similar δ34SO4 values in upland stream water compared to deposition and soil leachate, despite substantial variations in water table height in the streambed (92 cm), suggest that reoxidation of reduced sulphides is not an important contributor to SO4 export from the upland. Rather, net SO4 export from the upland subcatchment is likely due to net release from upland soil, and slight differences in δ34SO4 between bulk deposition and soil leachate are consistent with SO4 release from organic S forms.  相似文献   

13.
Temperature sensitivities of microbial respiration and dissolved organic carbon (DOC) production were investigated by using a novel method, thermal gradient (2–20°C) temperature bar, in two typical peatlands (bog and fen) in North Wales, UK over 12 months. The study indicated that temperature sensitivity of soil organic carbon decomposition in North peatlands was regulated not only by temperature but soil water content, dry–rewet event and phenologies. Potential decreases of Q10 (CO2) with increasing soil temperature were confirmed in both peatlands, but Q10 (DOC) increase with increasing soil temperature in both bog and fen sites. These results imply, if other factors such as the so-called CO2 fertilization effect are simultaneously taken into account, that the feedback of global warming induced CO2 release from peatlands to climate change may be overestimated in current biogeochemical models. However, global warming might have been nonlinearly accelerating DOC thermal production, and therefore it helps explaining the causes of remarkable increase of DOC in surface water in the Northern Hemisphere during last several decades.  相似文献   

14.
《Applied Geochemistry》1999,14(6):719-734
The geochemistry of Mn and Fe in surface pools, pore-waters and surface peats and the sorption of Zn by the surface peats was contrasted among 15 peatlands sampled along a mineral-poor to mineral-rich fen gradient. Sorption of Zn by surficial peats was compared via distribution coefficients, both total (KDT) and partial (KDERMn, KDRFe and KDORG), where ER Mn, R Fe and ORG are amounts of Zn recovered from the easily reducible Mn oxides, reducible Fe oxides, and organic components of peat, respectively. Apparent stability constants (KAs) for Zn sorption onto oxides of Fe recovered from the surface peats were also calculated and compared along the same gradient. Peat geochemistry was peatland dependent; mineral-poor fens had less easily reducible Mn and greater amounts of organic matter (%Loss on Ignition; LOI) versus mineral-rich fens (range of 0.66–8.6 mm kg−1 for ER Mn and 20–88% LOI for organic matter). Reducible Fe also varied among peatlands (range 51–315 mm kg−1) but was independent of the mineral-poor to mineral-rich fen gradient. Comparison of partial KDs for amounts of Zn sorped onto the ER Mn, R Fe and ORG components of peat indicated that sorption was dominated by R Fe in all peatlands. KDTs ranged from 0.54–2.00. In contrast to other aquatic systems, however, the range in KDTs was not related to either surface or pore-water pH. KAs ranged from 0.36 to 3.06 and were also independent of surface or pore-water pH. However, average KAs (but not KDTs), were greater for mineral-poor fens (P<0.02), suggesting greater Zn binding by surface peats of mineral-poor fens versus either the moderately poor or mineral-rich peatlands. Other water chemistry variables, such as pore-water base cation concentrations, weakly correlated to Zn partitioning onto R Fe (r=−0.35, P=0.05), but did not fully explain differences in Zn partitioning among peatlands. Greater average KAs for the mineral-poor peatlands may in part be due to the presence of strong metal-organic matter-Fe oxide complexes in the Sphagnum dominated peatlands as well as lower pore-water base cation concentrations that occur in the mineral-poor peatland as compared to the more mineral-rich fens.  相似文献   

15.
In order to examine the transportation and deposition mechanisms of Hg, we investigated the ore and hydrothermal alteration minerals and solid organic matters from Itomuka mercury mine located in the eastern part of central Hokkaido. In addition to the ore minerals, native mercury and cinnabar, quartz, marcasite, alunite, kaolinite, and minor amounts of pyrite and smectite were identified in the Hg ore by powder X‐ray diffraction (XRD) analysis. This mineral assemblage of acid sulfate alteration was likely developed under the conditions of low temperature (≤100°C) and low pH (≤2) in the steam‐heated environment. The H2SO4 was produced above the water table by the oxidation of H2S separated from deep, near‐neutral fluids by boiling. The dominance of native mercury over cinnabar in Hg ore indicates that the greater part of mineralized Hg was transported as Hg0 in aqueous solution and vapor with low sulfur fugacity. The solid organic matters found in the Hg ore were analyzed with SEM‐EDS, micro‐XRD, and micro‐Fourier transform infrared (FTIR) spectroscopy, and these results suggest that the organic matters contributed to keeping the low fO2 of the Hg‐bearing fluid and transportation of Hg as Hg0 in S‐poor condition. Because the solubility of Hg in acidic fluid is low, neutral to alkaline fluid seems to have leached Hg from the basement sedimentary rocks of Hidaka Group which also supplied the organic matters to the fluid. The oxidation and cooling of Hg‐bearing solution and vapor triggered the deposition of liquid Hg as a primary phase.  相似文献   

16.
《Applied Geochemistry》2006,21(11):1855-1867
Methylmercury (MeHg) and total Hg (THg) concentrations in soil profiles were monitored in the Thur River basin (Alsace, France), where a chlor-alkali plant has been located in the city of Vieux-Thann since the 1930s. Three soil types were studied according to their characteristics and location in the catchment: industrial soil, grassland soil and alluvial soil. Contamination of MeHg and THg in soil was important in the vicinity of the plant, especially in industrial and alluvial soil. Concentrations of MeHg reached 27 ng g−1 and 29,000 ng g−1 for THg, exceeding the predictable no effect concentration. Significant ecotoxicological risk exists in this area and remedial actions on several soil types are suggested. In each type of soil, MeHg concentrations were highest in topsoil, which decreased with depth. Concentrations of MeHg were negatively correlated with soil organic matter and total S, particularly when MeHg concentrations exceeded 8 ng g−1. Under these conditions, MeHg concentrations in soil seemed to be influenced by THg, soil organic matter and total S concentrations. It was found that high MeHg/THg ratios (near 2%) in soil were mainly related to the combined soil environmental conditions such as low THg concentrations, low organic C/N ratios (<11) and relatively low pH (5–5.5). Nevertheless, even when the MeHg/THg ratio was low (∼0.04%), MeHg and THg concentrations were elevated, up to 13 ng g−1 and to 29,000 ng g−1, respectively. Thus, both THg and MeHg concentrations should be taken into account to assess potential environmental risks of Hg.  相似文献   

17.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

18.
Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.  相似文献   

19.
A mass-flow event triggered by the 1996 flood in the Saguenay region buried the mercury-contaminated indigenous sediments at the head of the Saguenay Fjord under up to 50 cm of postglacial deltaic sediments. The vertical distributions of total mercury and methyl-mercury in the sediments and pore waters were measured in box cores recovered from the Saguenay Fjord within and outside the affected area prior to and on six consecutive years after the flood. The total solid mercury (THgs) profiles show that remobilization was limited and most of the mercury remobilized from the contaminated, indigenous sediments was trapped below or slightly above the former sediment–water interface by authigenic acid-volatile sulfides (AVS). Nonetheless, a small fraction of the remobilized mercury diffused into the flood layer, some of it was methylated and/or scavenged by organic matter and AVS. Elevated solid-phase methyl-mercury concentrations, [MeHgs], at depth in the sediment are correlated to peak AVS and THgs but, in the absence of elevated dissolved methyl-mercury concentrations, [MeHgd], the higher [MeHgs] may reflect an earlier episode of Hg methylation, the product of which was scavenged by the AVS and buried. Throughout the sediment cores, sediment–water partitioning of MeHg and Hg(II) appears to be controlled in great part by the AVS and residual organic matter content of the sediment.  相似文献   

20.
Throughout northeast China, the widely distributed peatlands have formed a large carbon (C) pool. However, the relationship between peatland initiation and climate controls is still poorly documented and understood. Understanding the responses of these C‐rich ecosystems to past climate change will provide useful insights into projecting the fate of peatland C in the future. In this study, we present a detailed historical reconstruction of peatland development in northeast China based on 312 basal peat dates, and examine the relationship between Holocene peatland dynamics and climate sensitivity. Our results indicate that peatland initiation started in the early Holocene, and that the majority of peatlands were initiated by and developed during the late Holocene. After the most intensive initiation period of 4.2–0.8 ka, the rate of peatland development slowed, which was concomitant with decreasing insolation and monsoon intensity. The widespread peatland initiation in the late Holocene might have been caused by the cool and moist climate patterns. The optimum timing of the peatland development was not uniform across northeast China, and these spatio‐temporal differences indicate the influences of regional climate and terrain on peatland initiation. Peat‐core data show variations in the long‐term apparent rate of C accumulation (LORCA) during the Holocene, with an average rate of 37.2 g C m?2 a?1. The peak LORCA occurred during 10.5–9.0 ka, probably in response to higher temperatures and stronger East Asia summer monsoon intensities. Both temperature and humidity are important factors influencing the peatland initiation and C dynamics in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号