首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covers with capillary barrier effects (CCBE) are considered to be one of the most effective ways to control acid mine drainage (AMD) production from mine wastes. The use of low-sulphide tailings in CCBE has been proposed recently for cases where other types of material may be unavailable near the mining site. This paper presents leaching column test results showing that CCBEs with a moisture-retaining layer made of slightly reactive tailings, with three different sulphide contents, can effectively limit the production of AMD from the acid-generating tailings placed underneath. With these layered covers, the leachate pH was maintained near neutrality throughout the testing period. When compared to uncovered tailings, the efficiency of the cover systems for reducing the amount of contaminants in the percolated water was determined to be greater than 99% for zinc, copper and iron. This study shows that the use of low-sulphide tailings can improve the ability of a CCBE to limit gas diffusion by consuming a fraction of the migrating oxygen.  相似文献   

2.
A series of laboratory column tests on reactive mine tailings was numerically simulated to study the effect of high water saturation on preventing sulfide mineral oxidation and acid mine drainage (AMD). The approach, also known as an elevated water table (EWT), is a promising alternative to full water covers for the management and closure of sulfidic tailings impoundments and for the long term control of acid mine drainage. The instrumented columns contained reactive tailings from the Louvicourt mine, Quebec, and were overlain by a protective sand cover. Over a 13–19 month period, the columns were exposed to atmospheric O2 and flushed approximately every month with demineralized water. A free draining control column with no sand cover was also used. During each cycle, water table elevations were controlled by fixing the pressure at the column base and drainage water was collected and analyzed for pH and Eh, major ions, and dissolved metals (Fe, Zn, Cu, Pb, and Mg). The columns were simulated using the multi-component reactive transport model MIN3P which solves the coupled nonlinear equations for transient water flow, O2 diffusion, advective–dispersive transport and kinetic geochemical reactions. Physical properties and mineralogical compositions for the material layers were obtained from independent laboratory data. The simulated and observed data showed that as the water table elevation increased, the effluent pH became more neutral and SO4 and dissolved metal concentrations decreased by factors on the order of 102–103. It is concluded that water table depths less than or equal to one-half of the air entry value (AEV) can keep mine tailings sufficiently saturated over the long term, thus reducing sulfide oxidation and AMD production.  相似文献   

3.
《Applied Geochemistry》2006,21(1):184-202
Sulfide mineral oxidation in mine tailings deposits poses a long term threat to surrounding ground water and surface waters. Soil or water cover remediation aims at reducing the rate of sulfide mineral oxidation by decreasing the O2 ingress rate. In this study, the authors addressed the rate of sulfide oxidation and pH buffering in ∼33 months long, well-controlled laboratory studies of water saturated columns of sulfidic mine tailings from the Kristineberg site in Sweden at reduced O2 availability. The element discharge rates slowly declined towards a quasi-steady state over hundreds of days. Non-reactive tracer tests showed an anomalously large dispersion, indicating strong flow heterogeneity, possibly including preferential flow and/or stagnant water zones. Congruent dissolution of pyrite and sphalerite by injected oxidants (dissolved O2 and Fe(III)) adequately explained the discharge rate of Fe, S and Zn at quasi-steady state. Arsenic, Pb and Cu were partly retained in the tailings. Base cation discharge rates, and thus pH buffering, were apparently controlled by the rate of acidity production, with actual pH levels, available mineral surface area, and water residence times being of less importance.  相似文献   

4.
Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon ZnCu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension of the water cover, pyrite is enriched in cobalt (up to 2.6 wt%) indicating reprocessing of tailings as an alternative management option. Through adoption of an integrated mineralogical and geochemical characterization approach for tailings assessment robust management strategies after mine closure can be developed.  相似文献   

5.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

6.
One important step in the design of inclined covers with capillary barrier effect (CCBE) is the determination of the water diversion length (DL). Numerical simulations can predict the DL more precisely than steady-state analytical solutions. Nevertheless, as simplified methods have always been part of engineering design, the application of analytical solutions with conservative boundary conditions, may allow engineers to make reasonable predictions, particularly during the pre-feasibility stage of a project. In this study, a CCBE was designed, constructed and instrumented at the Saint-Tite-des-Caps landfill, Quebec, Canada. This CCBE included a seepage control layer superimposing a sand-gravel capillary barrier. The seepage control layer was made up of deinking by-products (DBP), an industrial by-product that was previously disposed of as waste. The capillary barrier was designed using an adaptation of the Ross analytical solution and the scenario considered was that of steady-state flow during constant seepage flow applied uniformly at the top of the sand-gravel capillary barrier. Although these conditions appear simplistic, they were deemed reasonable because placement of the seepage control layer on the top of the capillary barrier led to very low suctions at the interface, thereby allowing uniform downward seepage rates, limited by the saturated hydraulic conductivity of the DBP. In this paper, a discussion about the behaviour of the cover system based on 4 years of field data from several instruments is presented. The challenge of using DBP, more precisely the settlement of the DBP layer and its impact on k sat , is also assessed. The DL was reassessed considering the new k sat . A discussion on the validity of employing analytical solutions to determine DL is also presented. This paper illustrates how certain variables affect the design of inclined CCBEs that include a highly compressible material as seepage control layer.  相似文献   

7.
The Caldas Uranium Mine (CUM), located on the Poços de Caldas Plateau in the southeastern region of Brazil, is presently undergoing a decommissioning process. The aim of the present investigation is to identify and characterize the effects of acid mine drainage (AMD) originating from the CUM on surface water quality. To achieve these aims, sampling stations were located at two AMD sources: the retention pond at the foot of waste rock pile#4 (WRP#4) and the settling pond that receives effluents from the tailings dam (TD). Ten additional sampling stations were located along watercourses in the vicinity, both downstream and upstream of the mine. Sampling was performed during the rainy and dry seasons in 2010 and 2011. The water analysis detected significant changes in pH, electrical conductivity, F?, Cd, U, Zn, Al, Mn, As, Ca, SO4 2?, Pb, 238U, 226Ra, 210Pb, 232Th, 228Ra, and Mo in waters downstream of both pond discharge sites. It was demonstrated that the disequilibrium between 226Ra and 238U can be used to trace the extent of AMD impacts in nearby streams. Variations in 18O and 2H enabled the flow of mining-impacted water to be traced from the ponds to nearby streams. Multivariate analysis yielded a three-factor model: Factor 1 was interpreted as being associated with AMD (from WRP#4) and Factor 2 with a Ca–Mo relationship associated with the chemical constitution of the ore and with the treatment of tailings wastes in the area (from TD); Factor 3 was interpreted as being associated with the natural influence of geogenic processes on water quality in the area. The results of this study provide a scientific basis for recommending appropriate remedial actions during mine decommissioning.  相似文献   

8.
A sulfur and trace element enriched U–Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.  相似文献   

9.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

10.
 Annually, an amount of approximately 13 million cubic meters of hard-coal tailings must be disposed of in the German Ruhr Valley. Besides the waste of land in a densily populated region, the disposal of the pyrite-bearing material under atmospheric conditions may lead to the formation of acid mine drainage (AMD). Therefore, alternative disposal opportunities are of increasing importance, one of which being the use of tailings under water-saturated conditions, such as in backfilling of abandoned gravel pits or in the construction of waterways. In this case, the oxidation of pyrite, and hence the formation of AMD, is controlled by the amount of oxygen dissolved in the pore water of tailings deposited under water. In case the advective percolation of water is suppressed by sufficient compaction of the tailings, oxygen transport can be reduced to diffusive processes, which are limited by the diffusive flux of dissolved oxygen in equilibrium with the atmospheric pO2. Calculations of the duration of pyrite oxidation based on laboratory experiments have shown that the reduction of oxygen is mainly controlled by the content of organic substance rather than the pyrite content, a fact that is supported by results from oxidation experiments with nitrate. A "worst case" study has lead to the result that the complete oxidation of a 1.5-m layer of hard-coal tailings deposited under water-saturated conditions would take as much as several hundred thousand years. Received: 6 May 1996 · Accepted: 2 August 1996  相似文献   

11.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

12.
A sample preparation method of total sulphur measurement of reactive mine tailings was optimized. The total sulphur was measured by inductively coupled plasma optical emission spectroscopy, and ultrasound technique was used for sample digestion. The optimization process was adopted by a combined approach of experimental design and response surface methodology. The digestion time, temperature and acid-oxidant combination (i.e. effect of H2O2 with a fixed amount of acid mixture) were investigated. A two-level and three-factor (23) full factorial design of experiment was applied to identify the most significant factors, and a central composite design was used to optimize the digestion procedure. KZK-1, a sericite schist, was selected as the certified reference material. The optimum methodology at 95 % confidence level (P < 0.05) was identified to be 10 min of digestion at 77 °C, with a solution of 1 ml HNO3:1 ml HCl:1.35 ml H2O2. This combination resulted in 100 % sulphur recovery. The investigated method was verified by X-ray diffraction analysis. The optimum digestion level was applied to a reactive mine tailings, which achieved satisfactory results with a percentage relative standard deviation < 3 %.  相似文献   

13.
The seismic performance of a tailings impoundment can be adversely affected by the behavior of the retained tailings. However, there remains considerable uncertainty in tailings liquefaction analysis. Twenty cyclic simple shear tests conducted on tailings from a gold mine in Quebec, Canada, were simulated numerically. The simulations indicated that the dynamic behavior of tailings could be modelled reasonably well, except that the weighted cyclic resistance curve of the tailings differed from that of clean sand which was used to develop the constitutive model (UBCSAND). An (N1)60-CS value of 10 blows/30 cm was estimated for the tailings based on calibration at a CSR of 0.10 for 15 cycles of loading. Numerical simulation of the behavior of a 20-m-high deposit of tailings during an earthquake (Mw = 5.9) indicated liquefaction of the upper 8 m of tailings. Liquefaction analysis using the Simplified method with published magnitude scaling factors (MSF) did not predict the occurrence of liquefaction. The use of MSF values calculated from the laboratory testing predicted liquefaction in the upper 8 m of tailings, corresponding quite well with the numerical simulation. The results indicate that both analytical and numerical methods can be used to evaluate the potential for tailings liquefaction under seismic loads.  相似文献   

14.
钝化处理被广泛应用于含重金属尾矿的处理,可以从源头上防止酸矿废水(AMD)的产生,寻找一种价廉易得且对环境危害小的钝化剂十分必要。本文主要研究在骨炭作用下,用pH值为4的双氧水对黄铁矿进行氧化,探讨骨炭对黄铁矿氧化释放重金属的钝化作用。实验结果表明,添加不同含量的骨炭(分别为0.5、2.5和5 g)能将溶液的pH值分别提高到8.93、10.01和10.42,表明骨炭具有较强的中和能力,同时黄铁矿氧化释放的Pb、Zn和Cd等重金属离子浓度明显地降低。但当骨炭含量超过2.5 g时,对As有促进释放的趋势。红外光谱分析显示钝化后黄铁矿样品位于420、563、603、1 044、1 091 cm~(-1)处的特征峰主要来自PO_4~(3-)的振动,XRD进一步揭示了黄铁矿表面主要含磷次生矿物是磷铁矿和羟磷铁铅石,这些次生矿物对重金属钝化起着重要作用。因此,骨炭有望作为钝化含多重金属尾矿的钝化剂。  相似文献   

15.
《Applied Geochemistry》2002,17(4):431-443
A steady state geochemical model has been developed to assist in understanding surface-catalysed oxidation of aqueous Fe(II) by O2(aq), which occurs rapidly at circumneutral pH. The model has been applied to assess the possible abiotic removal of Fe(II)(aq) from alkaline ferruginous mine water discharges using engineered reactors with high specific-surface area filter media. The model includes solution and surface speciation equilibrium, oxidation kinetics of dissolved and adsorbed Fe(II) species and mass transfer of O2(g). Limited field data for such treatment of a mine water discharge were available for model development and assessment of possible parameter values. Model results indicate that an adsorption capacity between 10−6 and 10−5 mol l−1 is sufficient for complete removal, by oxidation, of the Fe(II)(aq) load at the discharge. This capacity corresponds approximately to that afforded by surface precipitation of Fe(III) oxide onto plastic trickling filter media typically used for biological treatment of wastewater. Extrapolated literature values for microbial oxidation of Fe(II)(aq) by neutrophilic microbial populations to the simulated reactor conditions suggested that the microbially-mediated rate may be several orders-of-magnitude slower than the surface-catalysed oxidation. Application of the model across a range of mine water discharge qualities shows that high Fe(II)(aq) loadings can be removed if the discharge is sufficiently alkaline. Additional reactor simulations indicate that reactor efficiency decreases dramatically with pH in the near acid region, coinciding with the adsorption edge for Fe2+ on Fe oxyhydroxide. Alkaline discharges thus buffer pH within the range where Fe(II)(aq) adsorbs onto the accreting Fe hydroxide mineral surface, and undergoes rapid catalytic oxidation. The results suggest that the proposed treatment technology may be appropriate for highly ferruginous alkaline discharges, typically associated with abandoned deep coal mines.  相似文献   

16.
《Applied Geochemistry》2006,21(8):1322-1334
The Ervedosa Mine, in north-eastern Portugal, has Sn-bearing quartz veins containing cassiterite and sulphides that cut Silurian schists and a Sn-bearing muscovite granite. These veins were mined for Sn and As2O3 until 1969. Cassiterite, the main Sn ore, has alternate lighter and darker growth-zones. The darker zones are richer in Fe, Nb, Ta and Ti, but poorer in Sn than the adjoining lighter zones. Exsolution blebs of ferrocolumbite, manganocolumbite, Ti ixiolite, rutile, ilmenite and rare wolframite were found in the darker zones. Arsenopyrite is the most abundant sulphide and contains inclusions of pyrrhotite, bismuth, bismuthinite and matildite. Other sulphides are pyrite, sphalerite, chalcopyrite and stannite. Secondary solid phases consisting mainly of hydrate sulphate complexes of Al, Fe, Ca and Mg (aluminocopiapite, copiapite, halotrichite, pickeringite, gypsum and alunogen, meta-alunogen) occur at the surface of the Sn-bearing quartz veins and their wall rocks (granite and schist), while oxides, hydroxides, arsenates and residual mineral phases (albite, muscovite and quartz) occur in mining tailings. Toxic acid mine waters (acid mine drainage AMD), which have high conductivity and significant concentrations of As, SO4 and metal (Cu, Zn, Pb, Fe, Mn, Cd, Ni and Co), occur in an area directly affected by the mine. Surface stream waters outside this area have low conductivity and a pH that is almost neutral. Metal and As concentrations are also lower. Stream waters within the impact area have an intermediate composition, falling between that of the AMD and the natural stream waters outside impact area. Waters associated directly with mineralised veins must not be used for human consumption or agriculture.  相似文献   

17.
《Applied Geochemistry》1999,14(6):747-759
A study of O2 penetration and pore water geochemistry of the flooded tailings at Stekenjokk has been performed. The results show that there is a diffusion of elements from the tailings pore water to the overlying water. The presence of elements such as Ca, Mg, S, Si, Ba and Sr are likely the result of diffusion of older process water trapped in the tailings. Oxygen concentrations in the tailings measured with microelectrodes show that there is O2 available down to 16 to 17 mm depth in the tailings. Pore water analyses show that there are subsurface maxima for the elements Cu, Zn, Ni, Co and Cd at depths of 0.25 to 2.75 cm. The highest concentrations of almost all elements were found where previously oxidised material was deposited before the flooding. Lower pH is measured in the uppermost part of the tailings compared with the pond water and the tailings pore water at depth. Oxidation of sulphides in the uppermost part of the tailings is probably occurring. A decrease in oxidation rate can be expected in the future due to deposition of organic material at the tailings surface. Flooding seems to be an efficient remediation method at Stekenjokk.  相似文献   

18.
At the Kristineberg mine, northern Sweden, sulphidic mine tailings were remediated in an 8-year pilot-scale experiment using sewage sludge to evaluate its applicability as a sealing layer in a composite dry cover. Sediment, leachate water, and pore gas geochemistry were collected in the aim of determining if the sludge was an effective barrier material to mitigate acid rock drainage (ARD) formation. The sludge was an effective barrier to oxygen influx as it formed both a physical obstruction and functioned as an organic reactive barrier to prevent oxygen to the underlying tailings. Sulphide oxidation and consequential ARD formation did not occur. Sludge-borne trace elements accumulated in a reductive, alkaline environment in the underlying tailings, resulting in an effluent drainage geochemistry of Cd, Cu, Pb and Zn below 10 μg/L, high alkalinity (810 mg/L) and low sulphate (38 mg/L). In contrast, the uncovered reference tailings received a 0.35-m deep oxidation front and typical ARD, with dissolved concentrations of Cd, Zn and sulphate, 20.8 μg/L, 16,100 μg/L and 1,390 mg/L, respectively. Organic matter degradation in the sludge may be a limiting factor to the function of the sealing layer over time as 85 % loss of the organic fraction occurred over the 8-year experimental period due to aerobic and anaerobic degradation. Though the cover may function in the short to medium term (100 years), it is unlikely to meet the demands of a long-term remedial solution.  相似文献   

19.

De Beers kimberlite mine operations in South Africa (Venetia and Voorspoed) and Canada (Gahcho Kué, Victor, and Snap Lake) have the potential to sequester carbon dioxide (CO2) through weathering of kimberlite mine tailings, which can store carbon in secondary carbonate minerals (mineral carbonation). Carbonation of ca. 4.7 to 24.0 wt% (average = 13.8 wt%) of annual processed kimberlite production could offset 100% of each mine site’s carbon dioxide equivalent (CO2e) emissions. Minerals of particular interest for reactivity with atmospheric or waste CO2 from energy production include serpentine minerals, olivine (forsterite), brucite, and smectite. The most abundant minerals, such as serpentine polymorphs, provide the bulk of the carbonation potential. However, the detection of minor amounts of highly reactive brucite in tailings from Victor, as well as the likely presence of brucite at Venetia, Gahcho Kué, and Snap Lake, is also important for the mineral carbonation potential of the mine sites.

  相似文献   

20.
 Acid mine drainage (AMD) occurs when sulfide minerals are exposed to an oxidizing environment. Most of the methods for preventing AMD are either short-term or high cost solutions. Coating with iron phosphate is a new technology for the abatement of AMD. It involves treating the sulfide with a coating solution composed of H2O2, KH2PO4, and sodium acetate as a buffer agent. The H2O2 oxidizes the sulfide surface and produces Fe3+ so that iron phosphate precipitates as a coating on the sulfide surface. Experiments performed under laboratory conditions prove that an iron phosphate coating can be established on pyrrhotite surfaces with optimal concentrations of the coating solution in the range of: 0.2M/0.01M H2O2, 0.2M KH2PO4, and 0.2M sodium acetate NaAc, depending on the experimental scale. Iron phosphate coating may be a long-term solution to the problem of AMD. The method would be easy to implement; the reagent cost, however, is not low enough, although it is lower than the conventional treatment with lime. Received: 30 March 1995 · Accepted: 6 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号