首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saturated hydrocarbon biomarkers were studied in bitumens from organic matter (OM) in the Lower and Middle Cambrian Kuonamka Complex in the Lena–Amga interfluve of East Siberia. Their contents and distribution were analyzed. It was established that OM of siliceous and carbonate rocks from the lower part of the sequence differs from OM of overlying mainly mixed siliceous–carbonate rocks in terms of distribution of alkanes, steranes, tricyclanes, hopanes, and ratios of their homologs. It was concluded that the peculiarities of molecular composition of OM in the rocks are related to the biochemistry of microorganism communities, the remains of which were accumulated in sediments of Cambrian sea. It is possible that the microbiota changed its composition in response to a sharp change of sedimentation settings, which follows from biomarker proxies. It is suggested that sediments in the lower part of the sequence were formed under conditions of H2S contamination. Catagenesis of OM and contribution of the Lower and Middle Cambrian potentially oil-generating rocks in naphthide generation on the northern slope of the Aldan anteclise are discussed.  相似文献   

2.
东海陆架泥质区沉积有机质的物源分析   总被引:28,自引:3,他引:28  
色谱和色谱/质谱分析表明,济州鸟西南泥质区正构烷烃、姥鲛烷、植烷、藿烷和甾烷等生物标志物的特征与现代长江口、老黄河口和新黄河口的河流沉积物均区别很大,该泥质区的沉积有机质主要来源于海洋低等生物(如细菌和藻类等)以及陆源高等植物的输入,表现为不同来源和成熟度的生物标志物的混合,同时该泥质区沉积有机质与矿物碎屑沉积物来源不尽相同。长江口泥质区正构烷烃高相对分子质量部分与长江口沉积物相似,正构烷烃和藿烷所反映的有机质成熟度高于现代长江和老黄河口沉积物,甾烷的成熟度与长江相仿而明显高于老黄河口沉积物。长江口泥质区的沉积有机质主要来源于长江输入的陆源高等植物碎片和海洋源的低等生物。东海陆架近岸与远端泥质区沉积有机质的物源很不相同。  相似文献   

3.
This work reports the historical trends and sources of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) in two 210Pb dated sediment cores extracted from the central mud areas of Bohai Sea (Bohai). The TOC/TN ratio of the bulk organic matter (OM) and the composition of the n-alkanes suggest that the sedimentary organic matter was of mixed marine and terrigenous sources. The coarser sediment grain size and decreasing C/N ratios since ∼1976 could be attributed to the relocation of the Yellow River mouth causing a decreased influence of Yellow River derived sediments and associated OM into the central Bohai. The concentration of total 16 PAHs in the two cores ranged from 34.2-202 ng/g (mean, 91.5) for BC1, and from 53.3-186 ng/g (mean, 103) for BC2, with a high abundance of 2-3 ring PAHs. Perylene in the two cores mainly originated from terrigenous sources via riverine discharge and thus could be potentially related to changes in the sediment load from the Yellow River into the Bohai over time. Petroleum inputs could be revealed by ratios of methylphenanthrenes to phenanthrene (MP/P) and the patterns of more stable geochemical biomarkers (hopanes and steranes) along the two cores, in addition to the presence of unresolved complex mixtures (UCM) in the surface layers. Source diagnostic ratios of PAHs indicated a pyrogenic origin from biomass and coal combustion with a minor petroleum contribution. Downcore trends of compositional PAHs profiles were in agreement with the socio-economic development in China in the past decades. This temporal variation of sedimentary PAHs can also reflect a different evolution stage of energy structure in China as compared with those of the western developed countries.  相似文献   

4.
Organic geochemical and petrological assessment of coals/coaly shales and fine grained sediments, coupled with organic geochemical analyses of oil samples, all from Permo–Triassic sections of the Southern Sydney Basin (Australia), have enabled identification of the source for the widely distributed oil shows and oil seeps in this region. The Permian coals have higher hydrogen indices, higher liptinite contents, and much higher total organic matter extract yields than the fine grained sediments. A variety of source specific parameters obtained from n-alkanes, regular isoprenoids, terpanes, steranes and diasteranes indicate that the oil shows and seeps were generated and expelled predominantly from higher plant derived organic matter deposited in oxic environments. The source and maturity related biomarkers and aromatic hydrocarbon distributions of the oils are similar to those of the coals. The oil-coal relationship also is demonstrated by similarities in the carbon isotopic composition of the total oils, coal extracts, and their individual n-alkanes. Extracts from the Permo–Triassic fine grained sediments, on the other hand, have organic geochemical signatures indicative of mixed terrestrial and prokaryotic organic matter deposited in suboxic environments, which are significantly different from both the oils and coal extracts. The molecular signatures indicating the presence of prokaryotic organic matter in some of the coal extracts and oils may be due to thin sections of possibly calcareous lithologies interbedded within the coal measures. The genetic relationship between the oils and coals provides new evidence for the generation and expulsion of oils from the Permian coals and raises the possibility for commercial oil accumulations in the Permian and Early Triassic sandstones, potentially in the deeper offshore part of the Sydney Basin.  相似文献   

5.
对北京地区具代表性的环境功能区土壤剖面中的藿烷、甾烷、芳香甾烷类分子标志物含量及组成变化进行了分析。在10个土壤剖面中都检测到了不同浓度的藿烷与甾烷系列化合物,其中水稻田(B9)和城区绿地(B7)这些化合物的含量最高,在农田(B6、B9)和城区绿地(B7)表层土壤中还检测到了少量的三芳甾烷。土壤剖面中藿烷和甾烷含量随深度的增大而降低,在表层30 cm深度范围内的变化较大,30 cm以下其含量波动甚微,但不同深度土层中藿烷和甾烷化合物的指纹特征相近。表明表层土壤均不同程度受到了化石燃料及其衍生物的影响,并且土壤剖面不同深度土壤中藿烷和甾烷具有相关性,受石油类燃烧污染源的影响较大,煤燃烧污染影响的比重相对较小,而且深部土壤的藿烷与甾烷主要来源于表层土壤。  相似文献   

6.
Marine strata are widely exposed in the Hushan and Chaohu areas, Lower Yangtze region. As biomarker geochemistry of the strata has not been well documented, this paper deals with the biomarker composition of representative samples collected from the Silurian, Carboniferous and Triassic systems and their geological implications, thus providing clues to marine organic matter. On the basis of experimental results, it is shown that abundant biomarkers (e.g. n-alkanes, isoprenoids, terpanes and steranes) were detected. As organic matter in the strata is highly to over mature in general based on petrologic microobservation, some biomarkers (mainly n-alkanes) except terpanes and steranes cannot reflect the source, depositional environment and maturity of organic matter. Thus, primarily based on analyses of the terpanes and steranes, it is suggested that organic matter in the Silurian and Carboniferous strata is derived mainly from lower organisms, while higher plants are predominant in the Triassic organic matter. This further indicates that the depositional environment may have transformed from the marine to continental facies in the Late Triassic. These results provide new evidence for the study of regional depositional evolution, and have enriched the study of biological composition of organic matter. In addition, the biomarker geochemistry of organic matter at high to over maturation stage is addressed.  相似文献   

7.
The molecular composition and distribution of the concentration of n-alkanes are considered for sediments of boreholes drilled in the shallow part of the Laptev Sea, in the area of Buor Khaya Gulf. The diverse molecular composition of n-alkanes is dominated by long-chain odd homologs, which indicate terrigenous organic matter (OM). Heterogeneous distribution and burial of OM are shown under conditions of pulsating contribution of river and thermoabrasive material and multiple changes in them up to hiatuses in sedimentation.  相似文献   

8.
Continental epithermal ore deposits are commonly associated with sedimentary organic matter, oils or solid bitumen. These organics embedded in mineral deposits can convey valuable information of the ore genesis. However, the extent to which the formation of ore minerals was recorded by organic compounds remains largely unknown, as also is how metal-rich ores interfere with the molecular proxies in the temperature regime envisaged for hydrothermal activity. The molecular compositional changes of ...  相似文献   

9.
The enclosed organic matter chiefly releases lower carbon-number n-alkanes under high temperature and high pressure,while the kerogen mainly produces higher carbon-number n-alkanes.The rsidual hydrocarbons generated by both kerogen and enclosed organic matter in the Tieling limestone contain abundant tricyclic terpanes,pentacyclic triterpanes and steranes,but the contents of tetracyclic terpanes and 25-norhopane are lower.The residual enclosed orgainc matter shows the same distribution characteristics of n-alkanes,steranes and terpanes as that of the original bitumaen A,i.e.,the higher contents of triterpanes and tetracyclic terpanes,the higher ratios of 25-norhopanes over regular hopanes and markedly degraded steranes.By comparing the residual hydrocarbon.residual enclosed orgainc matter and original enclosed orgainc matter.it can be concluded that steranes and terpanes in the residual hydrocarbons are produced mainly by the kerogen and subordinately by the residual enclosed organic matter,the steranes and terpanes do not enter into the residual enclosed organic matter,and the thermal evolution of the residual enclosed organic matter maintains its unique character.Furthermore,pressure retards the pyrolysis of higher carbon-number alkanes and influences the isomerization ratios of C29-steranes,making 20S/(20S 20R) lower under the higher pressure than that under lower pressure,Higher pressure retards the thermal evolution of organic matter.  相似文献   

10.
The Utrillas coal facies are located in the Maestrazgo basin in NE Spain. This mining district of Teruel contains sub-bituminous deposits from the Middle Albian (Lower Cretaceous 105 Ma) in areas near a delta estuary with abundant sulphur. The high sulphur content is due to an influx of sulphate caused by the geological recycling of Triassic gypsum from the catchment area into the delta estuary. In some outcrops, the weathered coal reveals leonardite deposits. The depositional environment of the basin originated coals, some of which are currently mined. The organic matter of the coals has been the object of scattered reports. Studies have focused on bulk pyrolysis parameters and microscopic observation in Utrillas samples, as well as the inorganic and insoluble organic fraction.We analysed the organic soluble extract of the Utrillas coals using GC–MS in order to characterize their aliphatic, aromatic and organosulphur compounds. The biomarker distribution allowed us to recognize different inputs, assess their depositional palaeoenvironment and finally determine their degree of maturity. In particular, homologous series of hopanes related to eubacteria were present. Biomarkers characteristic of higher plant inputs were also widely distributed (e.g. phyllocladane or C29 steranes). The presence of linear alkylbenzenes allowed us to recognize the palaeodepositional reducing environments where they were deposited. Specifically, thienylhopanes were associated with sulphur-reducing environments. Finally, the abundance of unsaturated biomarkers such as diacholestenes indicated low-maturity coals. Various aromatic ratios such as the methylphenanthrene index also suggested diagenesis in the initial stage.  相似文献   

11.
Geochemical characterisation of 18 crude oils from the Potwar Basin (Upper Indus), Pakistan is carried out in this study. Their relative thermal maturities, environment of deposition, source of organic matter (OM) and the extent of biodegradation based on the hydrocarbon (HC) distributions are investigated. A detailed oil-oil correlation of the area is established. Gas chromatography-mass spectrometry (GC-MS) analyses and bulk stable carbon and hydrogen isotopic compositions of saturated and aromatic HC fractions reveals three compositional groups of oils. Most of the oils from the basin are typically generated from shallow marine source rocks. However, group A contains terrigenous OM deposited under highly oxic/fluvio-deltaic conditions reflected by high pristane/phytane (Pr/Ph), C30 diahopane/C29Ts, diahopane/hopane and diasterane/sterane ratios and low dibenzothiophene (DBT)/phenanthrene (P) ratios. The abundance of C19-tricyclic and C24-tetracyclic terpanes are consistent with a predominant terrigenous OM source for group A. Saturated HC biomarker parameters from the rest of the oils show a predominant marine origin, however groups B and C are clearly separated by bulk δ13C and δD and the distributions of the saturated HC fractions supporting variations in source and environment of deposition of their respective source rocks. Moreover, various saturated HC biomarker ratios such as steranes/hopanes, diasteranes/steranes, C23-tricyclic/C30 hopane, C28-tricyclic/C30 hopane, total tricyclic terpanes/hopanes and C31(R + S)/C30 hopane show that two different groups are present. These biomarker ratios show that group B oils are generated from clastic-rich source rocks deposited under more suboxic depositional environments compared to group C oils. Group C oils show a relatively higher input of algal mixed with terrigenous OM, supported by the abundance of extended tricyclic terpanes (up to C41+) and steranes.Biomarker thermal maturity parameters mostly reached to their equilibrium values indicating that the source rocks for Potwar Basin oils must have reached the early to peak oil generation window, while aromatic HC parameters suggest up to late oil window thermal maturity. The extent of biodegradation of the Potwar Basin oils is determined using various saturated HC parameters and variations in bulk properties such as API gravity. Groups A and C oils are not biodegraded and show mature HC profiles, while some of the oils from group B show minor levels of biodegradation consistent with high Pr/n-C17, Ph/n-C18 and low API gravities.  相似文献   

12.
对鄂尔多斯盆地东胜地区中侏罗统直罗组砂岩中烃类包裹体进行镜下观察、描述,利用压碎抽提法对烃类包裹体进行色谱—质谱分析,并与白垩系油苗、三叠系油砂及源岩抽提物进行对比,目的是探讨其来源。包裹体油生物标志物成熟度参数,C29ααα甾烷20S/(S+R)、C32αβ藿烷22S/(S+R)比值基本达到平衡值,利用甲基菲指数计算的镜质体反射率参数介于0.64%~0.82%之间,显示包裹体中石油烃已接近成熟—成熟热演化阶段;物质来源及沉积环境参数,ααα20R甾烷百分含量C27>C28相似文献   

13.
The comprehensive biomarker characteristics from previously undescribed Middle Jurassic clays of Poland are presented. The molecular composition of the organic matter (OM) derived from clays of Aalenian to Callovian age has not changed significantly through time. High relative concentrations of many biomarkers typical for terrestrial material suggest a distinct dominance of OM derived from land plants. Increasing concentrations of C29-diaster-13(17)-enes towards the northern part of the basin indicate an increase in terrestrial input. This terrestrial material would have originated from the enhanced transport of organic matter from land situated at the northern bank of the basin, i.e., the Fennoscandian Shield. The organic matter was deposited in an oxic to suboxic environment, as indicated by relatively low concentrations of C33–C35 homohopanes, moderate to high Pr/Ph ratio values, an absence of compounds characteristic for anoxia and water column stratification, such as isorenieratane, aryl isoprenoids and gammacerane, as well as common benthic fauna and burrows. δ18O measurements from calcitic rostra of belemnites suggest that the mean value of the Middle Jurassic sea-water temperature of the Polish Basin was 13.1 °C. It is suggested that this mirrored the temperature of the lower water column because belemnites are considered here to be necto-benthic. The organic matter from the Middle Jurassic basin of Poland is immature. This is clearly indicated by a large concentration of biomarkers with the biogenic configurations, such as ββ-hopanes, hop-13(18)-enes, hop-17(21)-enes, diasterenes and sterenes. The identification of preserved, unaltered biomolecules like ferruginol, 6,7-dehydroferruginol and sugiol in Protopodocarpoxylon wood samples from these sediments present particularly strong evidence for the presence of immature OM in the Middle Jurassic sediments. Moreover, the occurrence of these polar diterpenoids is important due to the fact that they are definitely the oldest known natural products detected in geological samples.  相似文献   

14.
The Maikop Formation, deposited in eastern Azerbaijan during Oligocene and Early Miocene times, contains prolific source rocks with primarily Type II organic matter. Paleontological analyses of dinoflagellate cysts revealed a Lower to Upper Oligocene age for the investigated succession near Angeharan. A major contribution of aquatic organisms (diatoms, green algae, dinoflagellates, chrysophyte algae) and minor inputs from macrophytes and land plants to organic matter accumulation is indicated by n-alkane distribution patterns, composition of steroids and δ13C of hydrocarbon biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria, chemoautotrophic bacteria, as well as green sulfur bacteria. Higher inputs of terrigenous organic matter occurred during deposition of the Upper Oligocene units of the Maikop Formation from Angeharan mountains. The terpenoid hydrocarbon composition argues for angiosperm dominated vegetation in the Shamakhy–Gobustan area.High primary bioproductivity resulted in a stratified water column and the accumulation of organic matter rich sediments in the Lower Oligocene units of the Maikop Formation. Organic carbon accumulation during this period occurred in a permanently (salinity-) stratified, mesohaline environment with free H2S in the water column. This is indicated by low pristane/phytane ratios of all sediments (varying from 0.37–0.69), lower methylated-(trimethyltridecyl)chromans ratio in the lower units and their higher contents of aryl isoprenoids and highly branched isoprenoid thiophenes. Subsequently, the depositional environment changed to normal marine conditions with oxygen deficient bottom water. The retreat of the chemocline towards the sediment–water interface and enhanced oxic respiration of OM during deposition of the Upper Oligocene Maikop sediments is proposed.Parallel depth trends in δ13C of total OM, n-alkanes, isoprenoids and steranes argue for changes in the regional carbon cycle, associated with the changing environmental conditions. Increased remineralisation of OM in a more oxygenated water column is suggested to result in low TOC and hydrocarbon contents, as well as 15N enriched total nitrogen of the Upper Oligocene units.  相似文献   

15.
The Triassic–Jurassic boundary is characterized by strong perturbations of the global carbon cycle, triggered by massive volcanic eruptions related to the onset of the Central Atlantic Magmatic Province. These perturbations are recorded by negative carbon isotope excursions (CIEs) which have been reported worldwide. In this study, Triassic–Jurassic boundary sections from the southern margin of the Central European Basin (CEB) located in northern Switzerland are analyzed for organic carbon and nitrogen isotopes in combination with particulate organic matter (POM) analyses. We reconstruct the evolution of the depositional environment from Late Triassic to Early Jurassic in northern Switzerland and show that observed negative shifts in δ13C of the total organic carbon (δ13CTOC) in the sediment are only subordinately influenced by varying organic matter (OM) composition and primarily reflect global changes in the carbon cycle. Based on palynology and the stratigraphic positions of isotopic shifts, the δ13CTOC record of the studied sections is correlated with the GSSP section at Kuhjoch (Tethyan realm) in Austria and with the St. Audrie’s Bay section (CEB realm) in southwest England. We also show that in contrast to POM analyses the applicability of organic carbon/total nitrogen (OC/TN) atomic ratios and stable isotopes of total nitrogen (δ15NTN) for detecting changes in source of OM is limited in marginal depositional environments with frequent changes in lithology and OM contents.  相似文献   

16.
《Organic Geochemistry》2011,42(9):1076-1088
Bulk geochemical, petrographical, mineralogical and molecular compositions of unweathered, weathered and transitional zones of a Middle Jurassic fossil wood were analyzed to trace changes caused by oxidative weathering of the immature terrestrial organic matter (OM). The occurrence of such zones was confirmed by the mineral composition, showing replacement of siderite and pyrite by goethite. Vitrinite reflectance analysis of weathered and unweathered fossil wood samples revealed that weathering elevated the vitrinite reflectance values by ca. 0.1%, which should be taken into account during modeling of low maturity terrestrial OM. In the weathered part of the wood, most of the biomarkers and biomolecules were totally removed or the concentration decreased significantly. The concentration of most of the polynuclear aromatic hydrocarbons (PAHs) decreased by 50–80%, being >90% for the more reactive and less stable benzo[a]pyrene and perylene. On the other hand, several aromatic compounds, like phenanthrene and its methyl derivatives, phenyl naphthalenes, fluoranthene and oxygen-containing aromatic compounds increased in concentration in the weathered zone. This results from processes such as formation of phenyl derivatives of PAHs and their cyclization, as well as aromatization of diterpenoids and incorporation of oxygen into aromatic structures. Weathering should always be considered in studies of fossilized terrestrial OM, especially in the case of thermal maturation modeling, because it significantly decreases the OM content and total sulfur content, changes vitrinite reflectance values and alters the extract composition as a result of organic compound degradation.  相似文献   

17.
The sources and enrichment of organic matter in a sediment core in the first member of the Xiagou Formation (K1g1) from the Chang 2-2 borehole of the Jiuquan Basin, NW China, have been examined using Rock–Eval, maceral, carbon isotopes and biomarker data. This data indicates that highly variable organic matter sources and preservation conditions in response to climate change. TOC content, HI, and δ13C value were strongly correlated with the abundance of gammacerane, woody organic matter content, steranes/hopanes ratio, and C29 sterane content. This correlation demonstrates the importance that the control of the salinity of the depositional environment and organic matter sources can have upon the enrichment, type, and carbon isotopic composition of organic matter. In the Jiuquan Basin’s relatively high temperature and arid climate, high salinity lakes with high primary productivity of algae, planktons, and bacteria, and good organic matter preservation conditions (anoxic bottom water) resulted in the enrichment of isotopically-light algae-bacterial organic matter. In the Jiuquan Basin’s regions with a relatively low temperature and wet climate, fresh lakes with low primary productivity of algae, planktons, and bacteria received significant terrigenous high plants input, resulting in the deposition of a low abundance of isotopically heavier terrestrial organic matter.  相似文献   

18.
唐友军  马忠梅  蒋兴超 《地质通报》2013,32(8):1315-1321
采用气相色谱、气相色谱-质谱技术,研究了扎鲁特盆地陶海营子剖面林西组烃源岩的生物标志化合物特征,剖析其蕴含的有机质生源、沉积环境、有机质热演化程度等方面的信息及地质地球化学意义.林西组烃源岩饱和烃气色谱以“前峰型”的单峰分布为主,主峰碳以C23为主,表明有机质来源以混合有机质为主;Pr/Ph值主要介于0.3~0.6之间,植烷优势较明显,指示为强还原的沉积环境.林西组烃源岩具有“长侧链的三环萜烷丰富、伽马蜡烷含量高和C27甾烷分布占优势”的分子化石组合特征,伽马蜡烷比值为0.15~0.29,平均值为0.19,说明林西组烃源岩形成于微咸水—半咸水环境;藿烷与甾烷的含量比值主要分布于0.6~1.0之间,平均值为0.84,表明细菌和藻类对有机质的贡献大致相当;C27甾烷丰度较高,C27(甾烷)/C29(甾烷)的比值为1.13,表明生烃母质生源构成是低等水生生物藻类来源的有机质特征.  相似文献   

19.
The erosion of rocks rich in organic matter typically leads to the complete mineralization of the organic material. However, in some cases, it is re-deposited to become a part of sediments once more. This process should be considered to be a part of global carbon cycle, possibly much more significant than assumed to-date. The research presented here aims to characterize re-worked organic matter occurring in post-glacial sediments of southern part of Poland, in the Oder river valley (the Racibórz town region, Miocene, Pleistocene and Holocene age). Organic substances extracted from the sediments originated from organic matter that had resided in rocks eroded by glaciers. Sediments were sampled in two boreholes which sediments were correlated. Sediments were extracted and extracts analyzed with gas chromatography-mass spectrometry (GC-MS) to assess distributions of biomarker groups. Organic matter of selected samples was pre-concentrated and analyzed with Py/GC-MS. In the extracts several biomarker parameters of source/environment and thermal maturity were calculated. Organic substances in the investigated sediments come from variable re-deposited organic matter occurring in rocks eroded by glaciers. Three main parent types of re-deposited organic material are identified showing variable geochemical features: 1) organic matter of recent or almost recent age being the source of polar labile compounds; probably formed in situ, 2) re-deposited organic matter of the middle diagenesis showing features similar to lignites (huminite reflectance Rf ~ 0.25–0.35%) deriving from angiosperm remains, mainly monocotyledons and to the lower extend also deciduous trees, 3) re-deposited organic matter at the middle catagenesis (Rf ~ 0.65–0.75%) being the source of most of aromatic hydrocarbons and biomarkers such as steranes, hopanes of the more thermally advanced distribution type. Its geochemical properties and assumed directions of sediment transport indicate bituminous coals of Upper Silesian Coal Basin together with coaly shales as a possible source of this organic matter. Such mixed origin of organic matter caused large discrepancies in values of thermal maturity parameters depending on input from the particular sources and occurrence both geochemical biomarkers and their biochemical precursors in the same samples.  相似文献   

20.
Application of organic petrology and geochemistry to coal waste studies   总被引:1,自引:0,他引:1  
Coal wastes produced during mining activities are commonly deposited in nearby dumps. These wastes mostly composed of minerals and variable amounts (usually 20-30%) of organic matter start to weather immediately after deposition. Oxidation of the organic matter can lead to self heating and self combustion as a result of organic and mineral matter transformations. The degree of alteration depends on the properties of the wastes, i.e., the maceral and microlithotype composition of the organic matter and its rank.Alteration of wastes also depends on the heating history, i.e., the rate of heating, final heating temperature, duration of heating, and the degree of air access. Although air is probably necessary to initiate and drive the heating processes, these usually take place under relatively oxygen depleted conditions. With slow heating, color of organic matter particles changes, irregular cracks and oxidation rims develop around edges and cracks, and bitumen is expelled. As a result, massive and detritic isotropic and strongly altered organic matter forms. On the other hand, higher heating rates cause the formation of devolatilization pores, oxidation rims around these pores and along cracks, vitrinite-bands-mantling particles, and bitumen expulsions.Organic compounds generated from the wastes include n-alkanes, iso-alkanes, alkylcyclohexanes, acyclic isoprenoids, mainly pristane, phytane and, in some cases, farnesane, sesquiterpanes, tri- and tetracyclic diterpanes, tri- and pentacyclic triterpanes, and steranes, polycyclic aromatic hydrocarbons (mostly with two- to five rings, rarely six rings), and phenols. The compounds formed change during the heating history. The fact that phenols are found in dumps where heating has not yet been completed, but are absent in those where heating ceased previously suggests the presence of water washing. The organic compounds formed may migrate within the dumps. However, when they migrate out of the dumps, they become a hazard to environment.This paper is a review on transformations of organic matter (both maceral composition and reflectance and chemical composition) in coal wastes deposited in coal waste dumps. Immediately after deposition the wastes are exposed to weathering conditions and sometimes undergo self heating processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号