首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

2.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

3.
Voluminous granitic intrusions are distributed in the West Junggar, NW China, and they can be classified as the dioritic rocks, charnockite and alkali-feldspar granite groups. The dioritic rocks (SiO2 = 50.4–63.8 wt.%) are calc-alkaline and Mg enriched (average MgO = 4.54 wt.%, Mg# = 0.39–0.64), with high Sr/Y ratios (average = 21.2), weak negative Eu (average Eu/Eu = 0.80) and pronounced negative Nb–Ta anomalies. Their Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7035–0.7042, εNd(t) = 4.5–7.9, εHf(t) = 14.1–14.5) show a depleted mantle-like signature. These features are compatible with adakites derived from partial melting of subducted oceanic crust that interacted with mantle materials. The charnockites (SiO2 = 60.0–65.3 wt.%) show transitional geochemical characteristics from calc-alkaline to alkaline, with weak negative Eu (average Eu/Eu = 0.75) but pronounced negative Nb–Ta anomalies. Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7037–0.7039, εNd(t) = 5.2–8.0, εHf(t) = 13.9–14.7) also indicate a depleted source, suggesting melts from a hot, juvenile lower crust. Alkali-feldspar granites (SiO2 = 70.0–78.4 wt.%) are alkali and Fe-enriched, and have distinct negative Eu and Nb–Ta anomalies (average Eu/Eu = 0.26), low Sr/Y ratios (average = 2.11), and depleted Sr–Nd and zircon Hf isotopic compositions ((87Sr/86Sr)i = 0.7024–0.7045, εNd(t) = 5.1–8.9, εHf(t) = 13.7–14.2). These characteristics are also comparable with those of rocks derived from juvenile lower crust. Despite of the differences in petrology, geochemistry and possibly different origins, zircon ages indicate that these three groups of rocks were coevally emplaced at ~ 305 Ma.A ridge subduction model can account for the geochemical characteristics of these granitoids and coeval mafic rocks. As the “slab window” opened, upwelling asthenosphere provided enhanced heat flux and triggered voluminous magmatisms: partial melting of the subducting slab formed the dioritic rocks; partial melting of the hot juvenile lower crust produced charnockite and alkali-feldspar granite, and partial melting in the mantle wedge generated mafic rocks in the region. These results suggest that subduction was ongoing in the Late Carboniferous and, thus support that the accretion and collision in the Central Asian Orogenic Belt took place in North Xinjiang after 305 Ma, and possibly in the Permian.  相似文献   

4.
We developed a 238U–206Pb and 207Pb206Pb zircon dating method using a Cameca NanoSIMS NS50 ion microprobe. A 7-to 9-nA O primary beam was used to sputter a 15-μm crater, and secondary positive ions were extracted for mass analysis using the Mattauch–Herzog geometry. The multicollector system was modified to detect 90Zr+, 204Pb+, 206Pb+, 238U16O+, and 238U16O2+ ions simultaneously. A mass resolution of about 4000 at 10% peak height and with a flat peak top was attained, and the sensitivity of Pb was about 4 cps·nA− 1·ppm− 1. A multicrystal zircon standard (QGNG) from South Australia with a U–Pb age of 1842 Ma was used as a reference for Pb+/UO+–UO2+/UO+ calibration, and on the basis of the positive correlation between these ratios, we determined the sample 206Pb/238U ratios. 207Pb/206Pb ratios were measured by magnetic scanning in single-collector mode. The standard zircons 91500, from Canada, and SL13, from Sri Lanka, were analyzed against QGNG. Observed 238U–206Pb and 207Pb206Pb ages agreed well with published ages within experimental error. Then, 16 zircon grains in a metamorphic rock from Nagasaki, Japan, were analyzed. Observed ages were compatible with SHRIMP ages, suggesting that the NanoSIMS with a 15-μm probe diameter is suitable for ion microprobe U–Pb zircon dating.  相似文献   

5.
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

6.
Shoshonitic series volcanic rocks (SSVR) and adakites are widely distributed in the Permian terrestrial volcanic strata of the Yishijilike–Awulale range of west Tianshan, north Xinjiang, China. Isotopic dating yields Permian ages of 280–250 Ma. The SSVR include absarokite, shoshonite and banakite which are characterized by enrichment of alkalis, particularly in K, combined with lower Ti, higher Al (A/NKC = 0.70–0.99, metaluminous) and Fe2O3 > FeO. The SSVR that are rich in LILE with high REE contents and Eu/Eu range from 0.59 to 1.30. They are rich in LREE ((La/Yb)N 2.15–11.97) and depleted in Nb, Ta and Ti (TNT negative anomalies). The adakites are metaluminous to weakly peraluminous (A/NKC = 0.85-1.16) and belong to the high-SiO2 type of adakite (HSA, SiO2 = 62%–71%). They are characterized by lower ΣREE with strong LREE enrichment ((La/Yb)N 13–35). Pronounced positive Eu anomalies (Eu/Eu = 1.02–1.27), very low Yb contents and distinct TNT-negative anomalies are evident. The SSVR have εNd(t) (+ 1.28 to + 4.92) and (87Sr/86Sr)i (0.7041–0.7057) that are similar to adakites in the regions which are characterized by εNd(t) = 0.95 to + 5.69 and (87Sr/86Sr)i = 0.7050–0.7053. Trace element, REE and Sr/Nd isotopic compositions suggest that both SSVR and adakites possess similar source regions associated with underplated mantle-derived basaltic materials. Lithosphere extension driven by magmatic underplating was responsible for the generation of both the SSVR and adakites. This magmatism serves as a petrological indicator of underplating during the Permian. Obviously thickened crust (62–52 km), a complex Moho discontinuity, high heat flow (~ 100 mw·m− 2), widespread contemporary alkali-rich granites, basic dike swarms (K–Ar ages of 187–271 Ma, Ar–Ar ages of 174–270 Ma and Rb–Sr ages of 255 ± 28 Ma; εNd(t) + 1.84 to + 10.1; (87Sr/86Sr)i 0.7035 and 0.7065), and basic granulites (SHRIMP U–Pb age of 268–279 ± 5.6 Ma) provide additional evidences for the underplating event in this area during Permian.  相似文献   

7.
The Godar Sabz Mn deposit is located in the Nain-Baft ophiolitic belt in the northeast margin of the Sanandaj-Sirjan zone, Iran. The Nain-Baft back-arc extensional basin resulted from the subduction of the oceanic crust of Neo-Tethys under the southern margin of the Iranian Plate in the Early Cretaceous and hosts several mineral deposits, including volcanogenic massive sulfide, chromite, and Mn deposits. The mineralization in the Godar Sabz Mn deposit occurred predominantly as stratabound, massive, banded, layered, and lenticular orebodies in radiolarian cherts within Baft ophiolitic complex. The main ore minerals are pyrolusite, braunite, with minor amounts of todorokite. The significant geochemical features of the Godar Sabz ores, such as the high MnO content (21.82–80.65 wt%, average = 64.91 wt%), high Mn/Fe (average = 278), Si/Al ratios (average = 92.6), high Ba contents (average = 4495.6 ppm), the low average contents of Cu (81.8 ppm), Ni (106.2 ppm), Co (29.4 ppm), LREE > HREE, and trace element discrimination diagrams indicate a hydrothermal-exhalative source for mineralization. Chondrite-normalized REE patterns of studied ores have negative Ce and slightly positive Eu anomalies, which are similar to hydrothermal Mn deposits. The REE patterns of Mn ores coincide with basaltic lavas, suggesting that the Mn-mineralization in the Godar Sabz deposit was genetically related to the leaching of basaltic lavas. The Godar Sabz Mn deposit has many similarities with the main characteristics of the hydrothermal exhalative Mn deposits, including tectonic setting, host rock type, the morphology of orebodies, ore textures, mineralogy, and chemical features of ores.  相似文献   

8.
新疆赞坎铁矿床位于西昆仑塔什库尔干地块西段,是近年新发现的一个大型沉积变质型磁铁矿床。赋矿岩系布伦阔勒群主要由黑云母石英片岩、斜长角闪片岩、变粒岩、硅质岩及磁铁石英岩等组成。目前探明工业矿体4条,单个矿体长度大于2.5km,矿体厚10~70m;局部见高品位铁矿段(mFe50%),长度达900m,厚度40m左右。矿石类型主要为2种,一种为原生的条纹-条带状磁铁矿(为主);另一种为热液改造形成的块状(高品位铁矿石)及浸染状磁铁矿。矿石稀土元素配分(PAAS)表明,原生条纹-条带状铁矿石Ce和Y元素异常不明显(~1.15、~0.94),Eu具正异常(~1.69),Y/Ho平均值为25,稀土配分模式与沉积变质型铁矿相似。而受改造的矿石中,浸染状矿石具有较高的稀土总量,明显富集轻稀土,La和Ce显示正异常(~1.46、~1.17),Y显示负异常(=0.66~0.72),Eu表现为强烈的正异常(~4.37),稀土配分模式明显不同于原生条纹-条带状铁矿石。矿体围岩斜长角闪片岩(变沉积岩)中的碎屑锆石U-Pb年龄为591±1Ma,结合前人对矿区内侵入体的年代学研究(霏细斑岩,533Ma),大致反映沉积铁矿的形成时代为新元古代至早寒武世。电子探针显示,条带状磁铁矿中的TiO_2、AL_2O_3、MgO、MnO含量较低,标型组分含量与沉积变质型磁铁矿颇为接近,在磁铁矿单矿物成因图解中,条带状磁铁矿整体显示磁铁矿为沉积变质型铁矿;浸染状矿石和块状矿石的组成与典型沉积变质型铁矿的偏离反映了后期岩浆-构造热事件对条带状铁矿石的改造;上述结果显示赞坎铁矿整体属于沉积变质型铁矿(BIF)。调查发现赞坎高品位铁矿体与早寒武世侵入的霏细斑岩联系密切,高品位矿石及其围岩发育一定程度的矽卡岩化,如阳起石化、碳酸盐化和黄铁矿化。本文推测高品位铁矿石的成因可能为霏细斑岩的岩浆热液溶解并运移早期沉积变质铁矿中的含铁物质,在构造发育处充填交代形成块状磁铁富矿石。在早寒武世侵入到矿区中部的霏细斑岩体中,同时发育有角砾状磁铁矿和脉状磁铁矿,因此,岩浆热液改造原生条带状铁矿石形成高品位铁矿石的时代应为早寒武世。  相似文献   

9.
湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据   总被引:11,自引:0,他引:11  
沃溪金-锑-钨矿床的稀土元素地球化学组成良好地反映了成矿作用的条件和过程,并为示踪矿床成因提供了有用的信息.以流体包裹体为代表的成矿溶液,以较高的稀土总量、显著的轻稀土富集和缺乏明显的铕异常为特征,代表了一种通过在碎屑沉积物柱中循环而萃取矿质的演化的海水热液.矿石相对于成矿流体(母液)富集重稀土而轻微亏损铕,反映了矿石沉淀过程中来自于海水的稀土元素掺合.同一矿层内由下往上,重稀土相对富集的程度逐渐增大而稀土总量则逐渐降低,表明随着热液化学沉淀作用的进行,海水掺合的影响逐渐增强.矿石的稀土元素组成,无论在分布模式还是在轻重稀土之间的分馏程度上,均与其他许多 Sedex型多金属矿床十分相似,暗示了这些矿床具有相似的成因机制.稀土元素地球化学特征支持矿床同生沉积成因的观点.  相似文献   

10.
With a reserve of  200 Mt ore grading 6.08% Zn and 1.29% Pb (i.e., a metal reserve of  15 Mt) hosted in Cretaceous and Tertiary terrestrial rocks, the Jinding deposit is the largest Zn–Pb deposit in China, and also the youngest sediment-hosted super giant Zn–Pb deposit in the world. The deposit mainly occurs in the Jinding dome structure as tabular orebodies within breccia-bearing sandstones of the Palaeocene Yunlong Formation (autochthonous) and in the overlying sandstones of the Early Cretaceous Jingxing Formation (allochthonous). The deposit is not stratiform and no exhalative sedimentary rocks have been observed. The occurrence of the orebodies, presence of hangingwall alteration, and replacement and open-space filling textures all indicate an epigenetic origin. Formation of the Jinding Zn–Pb deposit is related to a period of major continental crust movement during the collision of the Indian and Eurasian Plates. The westward thrusts and dome structure were successively developed in the Palaeocene sedimentary rocks in the ore district, and Zn–Pb mineralisation appears to have taken place in the early stage of the doming processes.The study of fluid inclusions in sphalerite and associated gangue minerals (quartz, celestine, calcite and gypsum) shows that homogenisation temperatures ranged from 54 to 309 °C and cluster around 110 to 150 °C, with salinities of 1.6 to 18.0 wt.% NaCl equiv. Inert gas isotope studies from inclusions in ore- and gangue-minerals reveal 2.0 to 15.6% mantle He, 53% mantle Ne and a considerable amount of mantle Xe in the ore-forming fluids. The Pb-isotope composition of ores shows that the metal is mainly of mantle origin, mixed with a lesser amount of crustal lead. The widely variable and negative δ34S values of Jinding sulphides suggest that thermo-chemical or bacterial sulphate reduction produced reduced sulphur for deposition of the Zn–Pb sulphides. The mixing of a mantle-sourced fluid enriched in metals and CO2 with reduced sulphide-bearing saline formation water in a structural–lithologic trap may have been the key mechanism for the formation of the Jinding deposit.The Jinding deposit differs from known major types of sediment-hosted Zn–Pb deposits in the world, including sandstone-type (SST), Mississippi Valley type (MVT) and sedimentary-exhalative (SEDEX). Although the fine-grained ore texture and high Zn/Pb ratios are similar to those in SEDEX deposits, the Jinding deposit lacks any exhalative sedimentary rocks. Like MVT deposits, Jinding is characterised by simple mineralogy, epigenetic features and involvement of basinal brines in mineralisation, but its host rocks are mainly sandstones and breccia-bearing sandstones. The Jinding deposit is also different from SST deposits with its high Zn/Pb ratios, among other characteristics. Most importantly, the Jinding deposit was formed in an intracontinental terrestrial basin with an active tectonic history in relation to plate collision, and mantle-sourced fluids and metals played a major role in ore formation, which is not the case for SEDEX, MVT, and SST. We propose that Jinding represents a new type of sediment-hosted Zn–Pb deposit, named the ‘Jinding type’.  相似文献   

11.
Two tin-polymetallic vein-type deposits widely separated in time and space but with strong similarities in terms of mineralization style, ore mineralogy and chemistry have been studied comparatively with the aim of understanding the mineralogical evolution of In-rich hydrothermal systems. The Tosham deposit, Bhiwani district, Haryana, India, is of Neoproterozoic age and constitutes a Sn–Cu prospect with unusually high In content. The disseminated, crude stockwork and vein mineralization is hosted by greisenised metasedimentary rocks intruded by a porphyritic granite stock and by later rhyolitic effusives. The Goka deposit, Naegi district, Japan is probably of uppermost Cretaceous age and occurs close to a well fractionated ilmenite series granitoid body. The tin-polymetallic vein in the Goka deposit is hosted by a welded tuff unit close to a subvolcanic granodiorite porphyry.The main host minerals of indium in the Tosham and Goka ores are sphalerite, stannite, unidentified Zn–Cu–Fe–In–Sn–S phases and chalcopyrite. Up to 0.48 wt.% In has been noted in the Goka chalcopyrite, whereas at Tosham, the mineral has a maximum In concentration of 1220 ppm. At Goka the sphalerite contains up to 1.89 wt.% In, whereas In-bearing stannite carries up to ca. 9 wt.% of the metal. Roquesite is the other indium mineral present in the Tosham ores, but is absent in Goka. The mineral chemistry of the Tosham and Goka ores suggest that the In-bearing minerals belong to a multi-component Zn–Cu–Fe–(Ag)–Sn–In–S system. Based on various triangular plots of the atomic proportions of the main metals, it is inferred that there are end-member phases, roquesite and stannite, in the Tosham ores co-existing with chalcopyrite. The sphalerite is both pure end-member and Cu–In-bearing in both the Tosham and Goka ores. Some of the analysed stannite grains in Tosham ores could possibly be petrukite. The Zn–Cu–Fe–Sn–In–S system in the two ores has a Sn-poor, high-In solid solution phase and also a Sn-rich, low-In solid solution phase. It seems possible that these two solid solutions were the first to form during hydrothermal ore deposition at high temperatures from a disordered solid solution located at the (Cu + Ag):(Zn + Fe):(In + Sn) = 3:5:2 intersection in the (Cu + Ag)–(Zn + Fe)–(In + Sn) field. With decreasing temperatures, the Sn-poor, In-rich solid solution exsolved the Zn–In-mineral of Ohta [Ohta, E., 1980. Mineralization of Izumo and Sorachi veins of the Toyoha mine, Hokkaido, Japan. Bulletin, Geological Survey of Japan 31, 585–597. (in Japanese with English abstract).] and sphalerite, while the Sn-rich, In-poor solid solution was broken down to stannite and relatively-Cu-rich sphalerite.  相似文献   

12.
The Saishitang–Rilonggou Ore Field (SROF), which includes the Saishitang, Tongyugou, and Rilonggou ore deposits as well as other scattered occurrences, is located in the Elashan region in Qinghai Province, and is a significant Cu–Sn ore field in NW China. These ores are hosted in stratiform skarn deposits with the main metals being Cu and Sn, as well as Zn, Pb, Au, Ag, and trace elements (e.g. Ga, Ge, Se, and In). Bulk‐rock geochemical analyses of 50 ore samples from the three deposits show that In contents in the Saishitang deposit range from 0.03 to 39 ppm (average 12.7 ppm, n = 19), with 1000 In/Zn values that vary from >0.01 to 29.83 (average 4.29). Indium contents in the Tongyugou deposit vary from 7.51 to 131 ppm (average 28.37 ppm, n = 13), with 1000 In/Zn values from 0.74 to 48 (average 17.55). Finally, indium contents in the Rilonggou deposit vary from 0.73 to 120 ppm (average 36.15 ppm, n = 18), with 1000 In/Zn values from 0.33 to 47 (average 8.52). Indium is hosted mainly in sphalerite, while some other In‐bearing minerals (e.g., roquesite, stannoidite, and stannite) are present locally within the ore field. Roquesite, which replace or fill bornite, occurs in bornite‐rich ores in the Saishitang deposit. This is the first reported Chinese locality of roquesite. Based on previously reported Zn resources, a total of 136 tons of In is calculated to be hosted in the SROF, with 30, 66, and 40 tons of In attributed to the Saishitang, Tongyugou, and Rilonggou deposits, respectively. The differences in indium contents among the deposits and their respective geological histories and characteristics suggest that the origin of indium relates to volcanogenic metallogenesis in an early Permian volcano‐sedimentary basin. Based on the evaluation of In resources, future mining operations should include the recovery of indium in the Tongyugou and Rilonggou deposits.  相似文献   

13.
CSA mine exploits a ‘Cobar-type’ Cu–Pb–Zn±Au±Ag deposit within a cleaved and metamorphosed portion of the Cobar Supergroup, central New South Wales. The deposit comprises systems of ‘lenses’ that encompass veins, disseminations and semi-massive to massive Cu–Pb–Zn ores. The systems and contained lenses truncate bedding, are approximately coplanar with regional cleavage and similarly oriented shear zones and plunge parallel to the elongation lineation. Systems have extreme vertical continuity (>1000 m), short strike length (400 m) and narrow width (100 m), exhibit vertical and lateral ore-type variation and have alteration haloes. Models of ore formation include classical hydrothermalism, structurally controlled remobilisation and polymodal concepts; syntectonic emplacement now holds sway.Fluid inclusions were examined from quartz±sulphide veins adjacent to now-extracted ore, from coexisting quartz–sulphide within ore, and from vughs in barren quartz veins. Lack of early primary inclusions precluded direct determination of fluids associated with D2–D3 ore and vein emplacement. Similarly, decrepitation (by near-isobaric heating) of the two oldest secondary populations precluded direct determination of fluid phases immediately following D2–D3 ore and vein emplacement. Post-decrepitation outflow (late D3 to early post-D3) is recorded by monophase CH4 inclusions. Entrained outflow of deeply circulated meteoric fluid modified the CH4 system; modification is recorded by H2O+CH4 and H2O+(trace CH4) secondary populations and by an H2O+(trace CH4) primary population. The contractional tectonics (D2–D3) of ore emplacement was superseded by relaxational tectonics (D4P) that facilitated meteoric water penetration and return flow.Under D2 prograde metamorphism, entrapment temperatures (Tt) and pressures (Pt) for pre-decrepitation secondary inclusions are estimated as Tt300–330 °C and Pt1.5–2 kbar≈Plith (the lithostatic pressure). Decrepitation accompanied peak metamorphism (T350–380 °C) in mid- to late-D3, while in late-D3 to early post-D3, essentially monophase CH4 secondary inclusions were entrapped at Tt350 °C and Pt=1.5–2 kbar≈Plith. Subsequently, abundant CH4 and entrained meteoric water were entrapped as H2O+CH4 secondaries under slowly decreasing temperature (Tt330–350 °C) and constant pressure (Pt1.5–2 kbar). Finally, with increasingly dominant meteoric outflow, H2O+(trace CH4) populations record decreasing temperatures (Tt>300 to <350 down to 275–300 °C) at pressures of Phydrostatic<Pt (1 kbar) <Plith (1.5 kbar).The populations of inclusions provide insight into fluid types, flow regimes and P–T conditions during parts of the deposit's evolution. They indirectly support the role of basin-derived CH4 fluids in ore formation, but provide no insight into a basement-sourced ore-forming fluid. They fully support post-ore involvement of meteoric water. The poorly constrained entrapment history is believed to span 10 Ma from 395 to 385 Ma.  相似文献   

14.
The Suguti volcanic rocks of the southern Musoma-Mara greenstone belt in northern Tanzania comprise mainly of a bimodal suite of tholeiitic basalts-basaltic andesites and calc-alkaline rhyolites with a subordinate amount of intermediate rocks. Zircon U–Pb and whole rock Sm–Nd geochronology suggests that the two suites are cogenetic and were emplaced at 2755 ± 1 Ma with a common initial Nd value of 2.1.The tholeiitic basalts are characterised by relatively flat chondrite-normalised REE patterns with La/YbCN ratios of 0.8–1.6 (mean = 1.0). The basalts also exhibit negative Ti and Nb anomalies in primitive mantle-normalised multi-element diagrams. The flat REE patterns, the presence of prominent negative Nb anomalies and the positive initial Nd value of 2.1 suggest that the basalts were formed by low pressure melting of a mantle wedge in an active continental margin setting.Compared to the tholeiitic basalts, the calc-alkaline rhyolites are characterised by low abundances of the transition elements (Cr < 20 ppm, Ni < 20 ppm) and moderately high HFSE (e.g. Zr = 111–250 ppm) abundances. The rhyolites display strongly fractionated, slightly concave upward chondrite normalised REE patterns that are characterised by a slight depletion of the MREE relative to the HREE and minor to large negative Eu anomalies (Eu/Eu* = 0.3–0.9) and their epsilon Nd values range from +2.05 to +2.33. The depletion of the MREE relative to the HREE is an indication of fractionation of clinopyroxene and hornblende during petrogenesis whereas the negative Eu anomalies indicate plagioclase fractionation. The rhyolites are interpreted to have formed from the parental magma of the basalts by fractional crystallization and/or partial melting of a relatively young basaltic crust.  相似文献   

15.
Halogen elements play an important role in the metallogenesis of metallic ore deposits and are involved in the whole process of remobilization, transport and precipitation of metallic elements. However, with the exception of fluorine, which, as a component of fluorite and mica minerals, can be occasionally concentrated in ores, Cl, Br and I are hard to enrich in the ores. Investigations have found that the halogen elements tend to diffuse toward country rocks with the development of hydrothermal alteration in the process of their involvement in metallogenesis, especially during the post-ore stage when extensive halogen diffusion halos over orebodies would be formed. Such halogen element diffusion halos over the Chadong As–Ag–Au deposit extend as widely as 200 m. The largest diffusion extent is for I and the diffusion halos of Br are most noticeable 50–130 m away from the orebodies. In areas of ore exposure and the strongly altered zone, the Cl, Br and I contents are close to those of the strata with a V-shaped distribution pattern in the periphery of the mining district. Comparatively speaking, in going away from the altered zone, the major metallic elements Au and Ag in the deposit tend to decrease suddenly to their normal contents in the strata. This variation feature of halogen elements can be used as geochemical indicators for exploring concealed orebodies at depth. In the Chadong ore deposit, halogen element anomalies can be used to predict concealed orebodies at the depth range of 0–200 m.  相似文献   

16.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

17.
The Lakange porphyry Cu–Mo deposit within the Gangdese metallogenic belt of Tibet is located in the southern–central part of the eastern Lhasa block, in the Tibetan Tethyan tectonic domain. This deposit is one of the largest identified by a joint Qinghai–Tibetan Plateau geological survey project undertaken in recent years. Here, we present the results of the systematic logging of drillholes and provide new petrological, zircon U–Pb age, and molybdenite Re–Os age data for the deposit. The ore‐bearing porphyritic granodiorite contains elevated concentrations of silica and alkali elements but low concentrations of MgO and CaO. It is metaluminous to weakly peraluminous and has A/CNK values of 0.90–1.01. The samples contain low total REE concentrations and show light REE/heavy REE (LREE/HREE) ratios of 17.51–19.77 and (La/Yb)N values of 29.65–41.05. The intrusion is enriched in the large‐ion lithophile elements (LILE) and depleted in the HREE and high field‐strength elements (HFSE). The ore‐bearing porphyritic granodiorite yielded a Miocene zircon U–Pb crystallization age of 13.58 ± 0.42 Ma, whereas the mineralization within the Lakange deposit yielded Miocene molybdenite Re–Os ages of 13.20 ± 0.20 and 13.64 ± 0.21, with a weighted mean of 13.38 ± 0.15 Ma and an isochron age of 13.12 ± 0.44 Ma. This indicates that the crystallization and mineralization of the Lakange porphyry were contemporaneous. The ore‐bearing porphyritic granodiorite yielded zircon εHf(t) values between ?3.99 and 4.49 (mean, ?0.14) and two‐stage model ages between 1349 and 808 Myr (mean, 1103 Myr). The molybdenite within the deposit contains 343.6–835.7 ppm Re (mean, 557.8 ppm). These data indicate that the mineralized porphyritic granodiorite within the Lakange deposit is adakitic and formed from parental magmas derived mainly from juvenile crustal material that partly mixed with older continental crust during the evolution of the magmas. The Lakange porphyry Cu–Mo deposit and numerous associated porphyry–skarn deposits in the eastern Gangdese porphyry copper belt (17–13 Ma) formed in an extensional tectonic setting during the India–Asia continental collision.  相似文献   

18.
The Bayan Obo REE‐Nb‐Fe deposit in Inner Mongolia, China, consists of later REE‐mineralizing fluorocarbonate veins cutting the earlier banded and massive ores in the deposit. Samarium–neodymium dating using the minerals including huanghoite and rubidium–strontium dating using single‐grain biotites both from the later veins show concordant isochrons corresponding to 442 ± 42 Ma (2σ uncertainty) and 459 ± 41 Ma, respectively. The isochron ages suggest that the later REE vein mineralization took place during the middle Paleozoic at Bayan Obo, consistent with geological observations and age data previously reported.  相似文献   

19.
The sheeted quartz–sulfide veins of the Radzimowice Au–As–Cu deposit in the Kaczawa Mountains are related to Upper Carboniferous post-collisional potassic magmatism of the composite Zelezniak porphyry intrusion. Multiple intrusive activity ranges from early calc-alkaline to sub-alkaline and alkaline rocks and is followed by multiple hydrothermal events. Early crustally derived dacitic magma has low mg# (<63) and very low concentrations of mantle-compatible trace elements, high large-ion lithophile elements (LILE), moderate light rare-earth elements (LREE), and low high-field-strength elements (HFSE). Later phases of more alkaline rocks have higher mg# (60–70), and LILE, LREE, and HFSE characteristics that indicate mafic magma contributions in a felsic magma chamber. The last episode of the magmatic evolution is represented by lamprophyre dikes which pre-date ore mineralization and are spatially related to quartz–sulfide–carbonate veins. The dikes consist of kersantite and spessartite of calc-alkaline affinity with K2O/Na2O ratios of 1.1–1.9, mg# of 77–79, and high abundances of mantle-compatible trace elements such as Cr, Ni, and V. They have high LILE, low LREE, and low HFSE contents suggesting a subduction-related post-collisional arc-setting. The mineralization started with arsenopyrite that was strongly brecciated and overprinted by multiple quartz–carbonate phases associated with base-metal sulfides and Au–Ag–Bi–Te–Pb±S minerals. The sulfur isotope composition of sulfides ranges from –1.1 to 2.8 34S and suggests a magmatic source. At least two generations of gold deposition are recognized: (1) early refractory, and (2) subsequent non-refractory gold mineralization of epithermal style. Co-rich arsenopyrite with refractory gold and pyrite are the most abundant minerals of the early stage of sulfide precipitation. Early arsenopyrite formed at 535–345°C along the arsenopyrite–pyrrhotite–loellingite buffer and late arsenopyrite crystallized below 370°C along the arsenopyrite–pyrite buffer. Non-refractory gold associated with base-metal sulfides and with Bi–Te–Ag–Pb–S mineral assemblages has an average fineness of about 685, and is represented by electrum of two generations, and minor maldonite (Au2Bi). Fluid inclusions from various quartz generations co-genetic with base-metal sulfides and associated with carbonates, tellurides and non-refractory gold indicate fluids with moderate salinity (9–15 wt% NaCl equiv.) and a temperature and pressure drop from 350 to 190°C and 1.2 to 0.8 kbar, respectively. According to the result of the sulfur isotope fractionation geothermometer the temperature of base-metal crystallization was in the range from 322 to 289°C. Preliminary results of oxygen isotope studies of quartz from veins indicate a gradual increase in the proportion of meteoric water in the epithermal stage. The gold to silver ratio in ore samples with >3 ppm Au is about 1:5 (geometric mean). Hydrothermal alteration started with sericitization, pyritization, and kaolinitization in vein selvages followed by alkaline hydrothermal alteration of propylitic character (illitization and chloritization), albitization and carbonatization. The mineralization of the Radzimowice deposit is considered as related to alkaline magmatism and is characterized by the superposition of low-sulfidation epithermal mineralization on higher-temperature and deeper-seated mesothermal/porphyry style.Editorial handling: B. Lehmann  相似文献   

20.
The Nagoundéré Pan-African granitoids in Central North Cameroon belong to a regional-scale massif, which is referred to as the Adamawa-Yade batholith. The granites were emplaced into a ca. 2.1 Ga remobilised basement composed of metasedimentary and meta-igneous rocks that later underwent medium- to high-grade Pan-African metamorphism. The granitoids comprise three groups: the hornblende–biotite granitoids (HBGs), the biotite ± muscovite granitoids (BMGs), and the biotite granitoids (BGs). New Th–U–Pb monazite data on the BMGs and BGs confirm their late Neoproterozoic emplacement age (ca. 615 ± 27 Ma for the BMGs and ca. 575 Ma for the BGs) during the time interval of the regional tectono-metamorphic event in North Cameroon. The BMGs also show the presence of ca. 926 Ma inheritances, suggesting an early Neoproterozoic component in their protolith.The HBGs are characterized by high Ba–Sr, and low K2O/Na2O ratios. They show fairly fractionated REE patterns (LaN/YbN 6–22) with no Eu anomalies. The BMGs are characterized by higher K2O/Na2O and Rb/Sr ratios. They are more REE-fractionated (LaN/YbN = 17–168) with strong negative Eu anomalies (Eu/Eu* = 0.2–0.5). The BGs are characterized by high SiO2 with K2O/Na2O > 1. They show moderated fractionated REE patterns (LaN/YbN = 11–37) with strong Eu negative anomalies (Eu/Eu* = 0.2–0.8) and flat HREE features (GdN/YbN = 1.5–2.2). In Primitive Mantle-normalized multi-element diagrams, the patterns of all rocks show enrichment in LILE relative to HFSE and display negative Nb–Ta and Ti anomalies. All the granitoids belong to high-K calc-alkaline suites and have an I-type signature.Major and trace element data of the HBGs are consistent with differentiation of a mafic magma from an enriched subcontinental lithospheric mantle, with possible crustal assimilation. In contrast, the high Th content, the LREE-enrichment, and the presence of inherited monazite suggest that the BGs and BMGs were derived from melting of the middle continental crust. Structural and petrochemical data indicate that these granitoids were emplaced in both syn- to post-collision tectonic settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号