首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The concentrations of metals (Pb, Cu, Zn, Co, Ni, Fe and Mn) in the <2.5 μm fraction of surface soils (0–5 cm) from highly industrialized areas in Xuzhou (China) were determined. All analyzed metals with the exception of Mn and Co in the present study showed elevated concentrations in the <2.5 μm fraction of soils compared to background concentrations, particularly for Zn. Metal enrichment was positively correlated with carbonate complexation constants (but not bulk solubility products) as well as the first stability constants of metal-citrate, likely suggesting that both metal–organic complexation and/or precipitation of carbonate surfaces that subsequently adsorb metals are likely responsible for these metal enrichment on these samples. Sequential extraction analysis shows the metals Pb, Cu, Zn, Co and Mn were largely associated with the reducible fraction, whereas Ni was largely associated with the oxidisable fraction. Manganese is the only metal showing significant association with the exchangeable fraction (up to 33 %), suggesting that it may be the most susceptible metal to mobilization. Mineral magnetic analysis indicates that ferrimagnetic SSD + SP (stable single domain + superparamagnetic) minerals dominated the <2.5 μm fraction of Xuzhou surface soils. Lead, Cu and Zn were found to show significant correlations with χlf (p < 0.01), suggesting that magnetic technique might be beneficially used as a rapid and inexpensive method to estimate these metal contaminations in the <2.5 μm fraction of surface soils.  相似文献   

2.
长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制   总被引:23,自引:2,他引:23  
对长江中下游第四纪沉积物 (Q3 黄土,Q2 红土和Q3 红土 )发育土壤的磁性增强现象及其物理机制进行了讨论。结果表明 :(1)铁磁性矿物是土壤磁性的主要载体,它们是成土过程中形成的稳定单畴 (SSD)和超顺磁性 (SP)态的次生磁性矿物,没有显示重要的反铁磁性矿物的贡献;(2 )土壤磁化率 (χ)的高低与成土过程产生的稳定单畴和超顺磁性颗粒呈极显著正相关,指示了风化成土作用的强度,磁化率可作为反映成土环境变化的代用指标;(3)频率磁化率 (χfd) 5 %可作为土壤中的超顺磁性颗粒存在与否的临界值,土壤 χfd值的高低同样反映了风化成土作用的强度,可用作研究第四纪环境变化的有用工具之一。  相似文献   

3.
Heavy metal accumulation due to industrial activities has become a very sensitive issue for the survival of the aquatic life. Therefore, distributions of several heavy metals have been studied in the surface sediments of Tapti–Hazira estuary, Surat, to assess the impact of anthropogenic and industrial activities near estuary. Totally 60 sediment samples were collected from four different sites at Tapti–Hazira estuary, Surat from January 2011 to May 2011 and examined for metal contents. The average heavy metal load in the study area are found to be 43.28–77.74 mg/kg for Pb, 48.26–72.40 mg/kg for Cr, 117.47–178.80 mg/kg for Zn, 71.13–107.82 mg/kg for Ni, 123.17–170.52 mg/kg for Cu, 0.74–1.25 mg/kg for Cd, 14.73–21.69 mg/kg for Co. Calculated enrichment factors (EF) reveal that enrichment of Pb and Cd is moderate at all sites, whereas other metals Cr, Ni, Zn, Co, and Cu show significant to very high enrichment. Geo-accumulation index (I geo) results revealed that the study area is nil to moderately contaminated with respect to Cd, moderately to highly polluted with respect to Pb, Zn, and Cu and high to very highly polluted with respect to Co and Cr.  相似文献   

4.
In the present study, the enrichment, availability, speciation of heavy metals including Pb, Zn, Cu, Cd, Ni and Sb and magnetic properties of urban soils of Xuzhou (China) were investigated. All analyzed metals showed elevated concentrations compared to local background concentrations. Cadmium and Sb are the metals most enriched in the analyzed area, presenting enrichment factor, on average, of 16.5 and 8.3, respectively. By self-organizing map in combination with diagnostic ratios, the source of Sb, Cd, Cu and Pb in soils might be mainly from traffic emissions. Sequential extractions indicate that metals were primarily associated with the reducible fraction with the exception of Ni. The order of extraction efficiency of various metals was SBET (simplified physiologically based extraction test) > DTPA (diethylenetriaminepentaacetic acid) > CaCl2. The magnetic results show that soil samples were dominated by a strong ferrimagnetic mineral component with multi- and single-domain magnetic grains. Only CaCl2 extractable Sb was found to show significant correlations with χlf and SIRM. For both DTPA and SBET extractions, all metals investigated showed significant associations with both χlf and SIRM (saturation isothermal remanent magnetization).  相似文献   

5.
An increase in heavy metal pollution in the soils of Hassi Messaoud (Algeria) due to intense industrialization and urbanization has become a serious environmental problem. There are three large industrial complexes that have been established in the region of Hassi Messaoud for petroleum extraction field and refinery. The region hosts several industrial facilities which are the main sources for hazardous wastes. Surface soil samples from 58 sampling sites (systematically sampled; 1 × 1 km regular grid), including different functional areas in Hassi Messaoud, were collected and analyzed. The results showed that the average concentrations of Cu, Ni, Mn, Pb and Zn in soil of Hassi Messaoud were up to 13.17, 35.78, 121.21, 130.97 and 61.08 mg/kg, respectively. Ni concentrations were comparable to background values, while Cu, Mn, Pb and Zn concentrations were higher than their corresponding background values. Among the functional areas, the industrial regions displayed the highest metal concentrations, while the lowest concentrations occurred in rural soil. Principal component analysis coupled with cluster analysis showed that: (1) Pb and Zn had anthropogenic sources; and (2) Ni, Cu and Mn were associated with parent materials. Contaminations in soils were classified as geoaccumulation index and enrichment factor. Pollution index values of Cu, Ni, Mn, Pb and Zn varied in the range of 0.04–5.41, 0.46–2.49, 0.01–5.73, 0.62–152.9 and 0.09–53.01, with mean values of 1.32, 1.08, 1.26, 5.64 and 3.1, respectively. The integrated pollution index (IPI) of all the analyzed samples varied from 0.42 to 31.59, with a mean of 2.48, and more than 5.45 % of samples are extremely contaminated; 18.18 % are heavily contaminated; 60 % are moderately contaminated; and others are low contaminated. The spatial distribution of IPI showed that desert and rural areas displayed relatively lower heavy metal contamination in comparison with other areas.  相似文献   

6.
Concentrations of Pb and Zn, plant uptake of these metals, the influence of the plants’ growth on the physicochemical properties and metal concentrations in the tailings of an abandoned 300-year-old mine tailing dam in Zacatecas, Mexico were investigated. Tailings were found to be heavily contaminated, with average levels of 2621 ± 53 and 3827 ± 83 mg/kg for Pb and Zn, respectively (maximum concentrations of 8466 ± 116 and 12,475 ± 324 mg/kg, respectively), exceeding international standards. Though physico-chemical conditions (pH, conductivity, redox potential, moisture, organic matter, nitrate, nitrite, ammonium nitrogen, total nitrogen, phosphorus and sulfates) do not favor the development of vegetation, some plants have adapted to these adverse conditions. Moreover, there was a significant reduction of Pb and Zn concentration in the rhizosphere (between 10–78% for Pb and 18–62% for Zn, depending on plant species). Sporobolus airoides showed average biomass concentrations of 173 ± 2 and 313 ± 6 mg/kg, for Pb and Zn, respectively; which implies a risk for mobility and possible incorporation into the food chain. Barcleyanthus salicifolius, Asclepsias linaria and Cortaderia selloana on the other hand, showed average biomass concentrations of 28 ± 3 and 121 ± 5 mg/kg of Pb and Zn, respectively, thus representing a lower biomagnification risk. The effect of these plants to reduce metal concentrations in the rhizosphere, improve physico-chemical conditions in metal polluted substrates, but with limited metal accumulation in biomass, suggests that they can be evaluated for use in stabilizing metal polluted tailings.  相似文献   

7.
A study of agricultural lands around an abandoned Pb–Zn mine in a karst region was undertaken to (1) assess the distribution of heavy metals in the agricultural environment, in both dry land and paddy field; (2) discriminate between natural and anthropogenic contributions; and (3) identify possible sources of any pollution discovered. Ninety-two samples of cultivated soils were collected around the mine and analyzed for eight heavy metals, pH, fluoride (F?), cation exchange capacity, organic matter, and grain size. The eight heavy metals included Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg. The average concentrations (mg/kg) obtained were as follows: Cd 16.76 ± 24.49, Cr 151.5 ± 18.24, Cu 54.28 ± 18.99, Ni 57.5 ± 14.43, Pb 2,576.2 ± 1,096, Zn 548.7 ± 4,112, As 29.1 ± 6.36, and Hg 1.586 ± 1.46. In a site where no impact from mining activities was detected, the mean and median of Cd, Cu, Ni, Pb, Zn, As, and Hg concentrations in investigated topsoils were higher than the mean and median of heavy metal concentrations in reference soils. An ensemble of basic and multivariate statistical analyses was performed to reduce the multidimensional space of variables and samples. Two main sets of heavy metals were revealed as indicators of natural and anthropogenic influences. The results of principal component analysis (PCA) and categorical PCA demonstrated that Cd, Cu, Pb, Zn, and Hg are indicators of anthropogenic pollution, whereas Cr, As and Ni concentrations are mainly associated with natural sources in the environment. The contamination from Pb–Zn mining operations, coupled with the special karst environment, was a key contributing factor to the spatial distribution of the eight heavy metals in the surrounding soil. The values of heavy metals in the soil samples suggested the necessity of conducting a rigorous assessment of the health and environmental risks posed by these residues and taking suitable remedial action as necessary.  相似文献   

8.
The aim of this study was to determine the influence of sewage sludge (SLU) amendment on the desorption characteristics of zinc (Zn), lead (Pb), and cadmium (Cd) in contaminated calcareous soils. Three levels of SLU (0, 1, and 3% w/w) were added to the two calcareous contaminated soils. Samples were incubated for 30 days and equilibrated with 0.005 M DTPA for 0.25 to 240 h. The addition of SLU significantly increased the amount of DTPA-extractable Zn in soils. While the amounts of Cd, Pb, dissolved organic carbon (DOC), and pH showed a significant increase only in 3% w/w of SLU, with the exception of Cd desorption in 1% w/w of SLU, kinetics of Zn, Pb, and Cd extraction increased together with an increase in the level of applied SLU. The best models for describing desorption data were explicitly power function and Elovich. The rate constants of Zn and Pb had significant correlations with DTPA-extractable Zn and Pb, DOC and pH, which affect Zn and Pb desorption. Also, the rate constants of Cd had significant correlations with CEC that can be deemed as equivalent to the fact that Cd desorption is controlled by surface adsorption, particularly in the lower sludge application amount. These results can be used for management of sewage sludge application in contaminated calcareous soils.  相似文献   

9.
This research is focused on evaluating heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn) uptake and removal by Eleocharis ovata, Cyperus manimae, Typha dominguensis, and Pteridium aquilinum in a natural wetland impacted by mining activities. We analyzed heavy metals content and distribution in native plants, soils, and water of a semipermanent natural wetland in Taxco de Alarcón, Guerrero, and we also determined the physicochemical characteristics of the water. Translocation factor (TF) and bioconcentration factor (BCF) were evaluated. Results showed that physical and chemical conditions are favorable for plants development. Correlation analysis showed a good and positive relation (0.95) between Cu and Pb in soils and plants. In the analyzed matrices: Zn (0.62–2.20 mg/L) exceeded the permissible limits in water, high concentrations of Pb and Zn (26.57–525.67 and 266.67–983.33 mg/kg, respectively) were detected in the studied soils, and Pb exceeded the normal range for E. ovata and P. aquilinum in the analyzed plants. Uptake of heavy metals in the tissues of different species was found in the following order: root > leaf. Data of TF and BCF showed that E. ovata is a tolerant plant with respect to heavy metals exposure since TF value was greater than 1. This study showed that E. ovata could be considered as a bioaccumulator of heavy metals in contaminated soils.  相似文献   

10.
A total of 115 urban soil samples collected on grid bases from Al-Karak, South Jordan, were investigated for their field and dual-frequency magnetic susceptibility (χ field, χ d) and heavy metal content using Bartington susceptibility meters and ICP-MS. The upper soils have higher magnetic susceptibility values than lower soils, and large particles contain more heavy metals and higher magnetic susceptibility than smaller particles. This might be attributed to the lack of pedogenesis due to arid climate influence. Within the upper soil all heavy metal showed positive significant correlation with upper soil low-frequency χ dlf. This was evident from the distribution maps produced by Surfer 9.0 for χ dlf and heavy metals. The results showed that higher χ dlf is associated with traffic-dominated sites more than other areas. The frequency-dependent susceptibility (χfd %) falls between 2 and 10 %, which indicate the presence of admixture of fine supermagnetic particles. Mildly correlation exists between χfd % and χ dlf, which implies that soils contain anthropogenic multi-domain grains. Selected samples have been analyzed for their mineral constituents; the results indicate the presence of magnetite as the main magnetic mineral. This confirms the anthropogenic source of pollution mainly from the vehicle-related materials. The results indicate the applicability of magnetic susceptibility for pollution detection.  相似文献   

11.
In this work, the total and each fraction concentration of toxic metals (Pb, Zn, Cu and Cd) in soils as well as in plants from a typical metallurgical industrial area in southwest of China were determined. The obtained experimental results demonstrated that the total toxic metal content in contaminated soils was in the order of Zn > Pb > Cu > Cd. Modified microwave-assisted extraction showed that the distributions of each fraction of toxic metals in soils were different and some soil properties may play a role in the fraction distributions. The content of Cu, Zn, Cd and Pb in different vegetables ranged from 9.82 ± 1.02 to 39.3 ± 1.13 mg kg?1, 1,321 ± 10.50 to 3,153 ± 11.30 mg kg?1, 4.47 ± 0.21 to 18.9 ± 0.37 mg kg?1 and 28 ± 1.2 to 102 ± 1.5 mg kg?1, respectively. And the accumulation of toxic metals in plants was in the order of Cd > Zn > Cu > Pb. The bioconcentration factor (BCF) values of Cd, Zn, Cu and Pb in the different tissues of plants were in the range of 0.03–0.43, 0.027–0.35, 0.014–0.12 and 0.004–0.051, respectively. The distribution of each toxic metal in plants indicated that the ability for plants to accumulate toxic metals in different tissues followed the sequence of leaf > stem.  相似文献   

12.
Former zinc and lead mines that have been operating for half a century are located in the massif of Bou Caid (Tissemsilt, Algeria). Hazardous heavy metals emitted from the mines are abundant in the surrounding soil and cause strong metal pollution in the region. This paper investigates the extent of lead and zinc mine activity derived pollution by characterizing both magnetic and geochemical properties of samples collected in the vicinity of the mines. The results of the magnetic study show the coexistence of magnetic minerals such as magnetite, hematite and goethite. Analyses on surface soils and weathered rocks suggest that hematite and goethite have ore-related lithogenic origins. Magnetic susceptibility shows a positive correlation with lead content when present in low-to-medium concentrations (< ~500 mg/kg). At higher lead concentrations, there is no correlation with magnetic susceptibility. The relationship between magnetic susceptibility and zinc content is not straightforward. These observations are explained by the higher affinity of Pb to iron oxides at lower pollution levels and their preferential bonding to carbonates when Pb and Zn contents are extremely high, as demonstrated by Iavazzo et al. (J Geochem Explor 113:56–67, 2012) in a study of former Zn–Pb mine in Morocco. Based on the general features of the spatial maps of field-measured magnetic susceptibility, mass-specific magnetic susceptibility, Pb and Zn contents, it is concluded that field magnetic measurements provide a good qualitative proxy of pollution spread out of the mining galleries, while laboratory measurements afford a more detailed investigation of the links between iron oxides and the main heavy metals in the ore.  相似文献   

13.
Anthropogenic influence, mainly due to urban and industrial activities and traffic exhaust, may affect urban topsoil via atmospheric contamination and solid waste. Magnetic susceptibility measurements were conducted on 21 urban topsoil samples from the city of Xuzhou, China. High intensities of magnetic susceptibility were detected in the majority of the samples. SEM analysis shows that magnetic minerals are in the form of spherules and mainly due to anthropogenic inputs. The heavy metals Pb, Cu, Zn, Se, Sc, Mo, Fe, and Bi show strong correlations with magnetic susceptibility, and Ag, Ba, Cd, Ni, Cr, Sb, and Sn, on the other hand, show a weak correlation with magnetic susceptibility. Whereas, of these metals studied, only Hg has no significant correlation with the susceptibility. The Tomlinson pollution load index (PLI) also shows significant correlation with the susceptibility (χ). The present study shows that magnetic susceptibility is a fast, inexpensive, and non-destructive method for the detection and mapping of contaminated soils.  相似文献   

14.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

15.
Analysis of soil samples from above and below trimlines representing the upper limit of glacial erosion at the Last Glacial Maximum demonstrates that soils with prolonged weathering histories above such trimlines yield significantly different mineral magnetic signatures from soils below trimlines. The nature of the contrast is conditioned by lithology. Basalt soils above the trimline yield significantly higher values of concentration‐dependent magnetic parameters (χ, χarm, IRM3T, soft IRM and hard IRM) than those below the trimline, due probably to transformation of non‐magnetic iron‐bearing minerals into magnetic forms. Conversely, for sandstone soils most magnetic parameters yield significantly lower values for above‐trimline samples, probably reflecting loss of ferrimagnetic minerals by dissolution and oxidation to aniferrimagnetic forms. These significant contrasts represent a new approach to validating high‐level weathering limits as periglacial trimlines cut at the Last Glacial Maximum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The use of mineral magnetic techniques as pollution proxy for road deposited sediment was explored using various statistical approaches. Standard techniques were adopted for measurement of mineral magnetic and geochemical parameters. The analyses of magnetic parameters revealed that the samples were dominated by ferrimagnetic minerals and multidomain grains. This implied that the magnetic fractions in the samples might be of anthropogenic origin. Results also indicate that the samples were dominated by low coercive, magnetically soft minerals. Thermomagnetic curves confirmed magnetite as the remanence bearing magnetic mineral having a Curie point temperature of ~580 °C. The strong association observed between magnetic susceptibility, susceptibility of anhysteric remanent magnetization and saturation isothermal remanent magnetization and aluminum, titanium, manganese, iron, chromium and lead demonstrated that these metals occurred as ferrimagnetic particles of technogenic origin resulting from vehicular sources. Assessment of pollution status of the road deposited sediment identified silicon and lead as the priority pollutants of concern. Generally, pollution load index was <1 (mean, 0.66 ± 0.14), indicating that the samples were not polluted in the overall, but the metals were in the buildup stage requiring constant monitoring. The sources of pollutants from principal component and cluster analyses identified the sources of pollution to be mainly from vehicular emissions such as brake linings, exhaust materials, tire wear, corroded metal parts, abrasion of lubricating oil and road construction materials. This study found that mineral magnetic techniques offer great potential as pollution proxy for soil pollution studies.  相似文献   

17.
A total of 113 samples of waste and soil were collected from a site in the state of San Luis Potosi, Mexico, that was occupied for several years by the metallurgical industry. Specific magnetic susceptibility (MS), electrical conductivity (EC) and pH were determined, as well as the total and available concentrations of potentially toxic elements (PTEs) such as As, Cd, Cu, Fe, Pb and Zn, which may cause a health risk for humans, animals and ecosystems, and the concentrations of major ions in aqueous extracts of soils and wastes. The solid phases of the samples were also characterized. The results revealed that the soils and wastes exhibited elevated values of PTEs, MS and EC. For soils these values decreased with increasing distance from the waste storage sites. The MS values were elevated primarily due to the presence of Fe-oxyhydroxides, such as magnetite, hematite and goethite, which contain PTEs in their structure leading to a high correlation between the value of MS and the As, Cd, Fe and Pb contents (r = 0.57–0.91) as well as between the PTEs values (r = 0.68–0.92). The elevated EC values measured in the metallurgical wastes were the result of presence of the sulfate minerals of Ca, Mg and Fe. The pollution index, which indicates the levels of simultaneous toxicity from elements such as As, Cd and Pb, was determined, with extreme hazard zones corresponding to areas that exhibit high MS values (0.91 correlation). In conclusion, MS measurements can be used as an indirect indicator to evaluate the PTE contamination in metallurgical areas, and EC measurements can aid in the identification of pollution sources.  相似文献   

18.
Farming is the major source of income for the villagers of North-central Sri Lanka. However, chronic kidney disease of unknown etiology is a major health hazard in the area and it is assumed that agricultural contaminants are the major causative agents. This study focuses on the geochemistry of soils in the area to determine possible natural and anthropogenic impacts of the problem. X-ray fluorescence analysis was used to determine the abundance of selected major and trace elements. Results show that geo-enrichment for many elements indicates slight to significant variations between agricultural and non-agricultural soils. Geoaccumulation index (I geo) shows higher pollution levels of Pb and V (2 < I geo < 3) and very lower pollution levels of As, Zn, Cu, Fe and Mn (1 < I geo < 2) in agricultural soils. However, I geo for non-agricultural soils implies lack of contaminations (I geo < 1). Positive correlations of As with Pb and Zn and negative correlations with Cu, Ni and Cr suggest that they may have derived from different sources such as sulfide minerals of basement rocks, fertilizers and agrochemicals. The results of this study suggest that there is no significant threat from As and other trace elements to soils. The accumulation of these elements in agricultural fields may have been effectively controlled by seasonal farming practices. However, there is a potential environmental risk from elements such as Pb and V due to their significant enrichment in soils.  相似文献   

19.
The study was taken up to establish the distributions of metals as well as to assess the extent of anthropogenic inputs into the Subarnarekha River. Bed sediments were collected; analyzed for metals; and assessed with the index of geo-accumulation (I geo), enrichment factor (EF) value, concentration factor (CF) and pollution load index (PLI). Metals in the sediment were variable in the river and there are major pollution problems at certain locations. The average concentrations of Fe, Cu, Cr, Pb, Mn, Ni, Zn, Co and Ba in mg/kg was found to be 30,802 ± 11,563, 69 ± 57, 111 ± 74, 75 ± 61, 842 ± 335, 42 ± 22, 100 ± 39, 15 ± 4 and 698 ± 435, respectively. The I geo, EF, CF and PLI indices showed that the contamination of Pb and Cu was more serious than that of Ni, Zn, Co and Ba, whereas the presence of Fe, Mn and Cr might be primarily from natural sources. The contamination of the sediments with metals at few locations is attributed to mining, industries and other anthropogenic causes. Principal component analysis was employed to better comprehend the controlling factors of sediment quality. The statistical analysis of inter-metallic relationship revealed the high degree of correlation among the metals indicated their identical behaviour during transport. PCA outcome of three factors together explained 83.8 % of the variance with >1 initial eigenvalue indicated both innate and anthropogenic activities are contributing factors as source of metal profusion in Subarnarekha River basin.The overall study reveals moderately serious pollution in the river basin principally in some locations under the anthropogenic influences.  相似文献   

20.
To reconstruct trace metal contamination history in the Yangtze River Delta region, annual growth rings of native hardwood species, Kalopanax septemlobus, were studied as the potential archive of the past Pb and Zn pollution events. Wide distribution of K. septemlobus trees in the study area and clear annual tree rings are advantages of this potential geochemical archive. In this research, tree ring increments for 48 years, from 1960 to 2007, were analyzed for Pb and Zn concentrations. Trees were sampled in two sites, Xiaoyingpan, a contaminated area around a mine (Pb, Zn, Ag) in the Yangtze River Delta region, and a reference site 19 km away. The results show that: (1) distinct Pb and Zn concentrations increasing from 1960 to 1974 in the polluted site were coincident with increasing historical open mining activities; (2) from 1974 to 1986, Pb and Zn concentrations dramatically decreased during a conversion from above-ground exploitation to below-ground extraction; and (3) after 1992, the concentration of Zn decreased gradually, but Pb concentrations initially increased with automobile traffic from 1986 to 2004, then decreased when the number of automobiles was controlled from 2004 to 2007. In particular, Pb and Zn concentrations in tree rings had no effect on K. septemlobus growth. Pb and Zn concentrations in tree rings were linearly related with those in soils. Growth rings of K. septemlobus around the Pb, Zn, Ag mine accurately recorded historical changes in Pb and Zn deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号