首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Wind action is the most dominant agent for erosion and deposition in the vast Western Desert of Egypt. Analysis of wind data from seven meteorological stations distributed along the Western Desert reveals that this desert is characterized by high-energy wind environments along the northern and southern edges and low-energy wind environments throughout the rest of the desert. Accordingly, sand drift potential follows the pattern of wind energy. Maximum sand drift potential was observed at the southern edge (571 vector units, which equals 40 m3/m width/year). Sand drift direction was observed towards the southeast except at the southern part of the desert where the trend of sand movement was towards southwest. The major dune type recognized on satellite images was the simple linear type. Linear dunes are generally associated with bimodal wind regime. Rates of sand drift potential and sand dune migration were greatest at East of Owinate region at the extreme southern part of the desert. Measurements of crescentic sand dune advance from two satellite images reveal a maximum advance rate of about 9 m/year at the southern part of the desert. Dune movement creates potential hazard to the infrastructures in this open desert.  相似文献   

2.
Based on the detailed wind data and in situ observation of wind-blown sand in the section of Wudaoliang-Tuotuo River along the Qinghai-Tibet Railway, the dynamic environment of sand flow, involving sand-laden wind, drift potential, sand transport and their time variation were investigated. The prevailing direction of sand-laden wind obviously varies seasonally. Sand-laden wind presents unidirectional characteristics from winter to the next spring and its prevailing direction is westerly. In summer, northeasterly wind begins to increase and lasts for a short period. The annual drift potential along the Qinghai-Tibet Railway reaches 970.54 Vector Units (VU), which belongs to a high-energy wind environment. Directional variability of wind regime (RDP/DP, RDP is the resultant drift potential (RDP) and DP is drift potential) is 0.88. The RDP is 854.31VU in the direction of 89.7°, which indicates that westerly sand-laden wind prevails in this region. Sand transport is well correlated to the frequency of sand-laden wind and increases with drift potential logarithmically.  相似文献   

3.
敦煌月牙泉形成于第四纪全新世,距今约12 ka。因泉湖地处鸣沙山环抱之中,形似月牙并兼具沙水共生的淡水泉湖特征,成为世界瞩目的自然地理环境的重要地质遗迹。对月牙泉湖近百年水位动态变化进行了综合分析,认为月牙泉湖水位动态变化的综合原因可归结为气候和人为因素。1960年开始农业打井灌溉、党河水库和渠系的修建导致地下水补、排失衡,到2001年月牙泉湖水位下降9. 98 m,年均下降0. 24 m,致使区域性地下水位的下降是造成月牙泉湖水位下降的主要原因,气温的升高加大蒸发量是月牙泉湖水位动态变化的次要原因。通过月牙泉人工补水工程,2018~2019年月牙泉湖水位上升1. 58 m,湖水域面积由9472. 59 m2逐渐扩大到13334. 75 m2,昔日古人心中美丽的月牙泉面貌再次展现在我们的眼前。  相似文献   

4.
The region of Ain Sefra is an arid region suffering from sand encroachment. In this study, we are calculating the shifted sand quantity and efficient wind directions during a period of 30 years (1985 to 2015) in order to classify the danger. The study shows that efficient winds in the region are characterized by their potential drift estimated at 220 till 329. This classifies the region as medium. Besides, the resultant drift potential is 76 to 99 with a migration coefficient of 0.3 which gives a medium classification to the zone and proves the Aeolian erosion complex system and its interrelation with other factors. Efficient winds generally blow from South-west to North-east with an angle of 234°. Furthermore, there are other directions causing sand drifting. Sand movement quantity is estimated between 23.03 and 15,224 m3/m/year according to effective wind threshold speed, which is 5 to 6 m/s. Autumn is the period when sand mobility is higher, but it decreases in winter. On the other hand, sand potential movement was well shown through satellite imagery between 1985 and 2015. Indeed, it closely corresponded to the previous study. It showed sand movement direction from South-west to North-east, and sand surface increase reached 16.44% of the global zone surface. Whereas, it decreased ??2.5% between 1985 and 2015. There is an important concentration of sand accumulation under the western mountain foothills along which sand moves. This shows that the ground particularities play a crucial role in this phenomenon.  相似文献   

5.
Three sets of Landsat? satellite images for the years 1993, 1998, and 2003 show that the sand dunes at the southwestern Desert of Egypt are generally moving towards southeast direction with a mean annual creeping speed over ground attaining 15 m/year. The manual-stickled field measurements show that the net annual extension of the longitudinal dunes in the coastal area is between 4 and 5 m/year, while the inland longitudinal dunes showed a net movement ranging between 5 and 6 m/year. Seasonal variations of drift potential and sand movement refer to a strongly high energy wind desert environment in the spring season, high energy wind desert environment in the summer season, and relatively high to intermediate in the autumn and winter seasons, respectively. The total annual estimated volume of transported sand which falls down into Lake Nasser basin attains 16,225,808 m3 as calculated by Bagnold's equation and quantities of sand collected from the sand traps. Comparing this value with the total volume of Lake Nasser Basin, which attains 120?×?109 m3, we can conclude that the sand sheets or sand accumulations may represent serious natural hazards to Lake Nasser in some locations. However, the sand drifting towards the lake may be obstructed by high contour topography hindrance, and the mean grain size of the sand sheets is bigger than 0.25 mm, which needs high wind velocity more than 4 m/s. In addition, the direction of the prevailing wind is N-NNW to S-SSE, and this direction sometimes is parallel to Lake Nasser in some places according to the meandering of the lake. The total lengths of hazardous areas along the western bank of Lake Nasser, which receive the most amounts of the drifted sands, attain 43.6 km only.  相似文献   

6.
Star dunes have received less study than other major dune types, though they are widely recognized to represent a major dune type that develops under a multi-directional wind regime. Several types that include simple, compound, and complex star dunes are identified in the south of China’s Kumtagh Desert. It is suggested that the formation and development of these star dunes is controlled by wind regime, the underlying and surrounding topography, and sediment availability. A complex wind regime and rich sediment availability are generally required for the development of star dunes. Especially, wind regime appears to be the most important control factor. The wind regime under which star dunes arise is characterized by the drift potential, amount of variability in drift direction, and the direction distribution mode of the drift potential. It is strongly suggested that a rectangular bimodal wind direction distribution mode has unique significance in star dune formation. Under this mode, star dunes can develop in areas with a directional variability index typical of linear dunes or even barchan dunes. A development model is proposed for star dunes based on the following evolution: barchan dunes → transverse ridges → dune networks → simple star dunes → compound star dunes → star dunes atop complex linear dunes.  相似文献   

7.
A sand budget for the Alexandria coastal dunefield, South Africa   总被引:5,自引:0,他引:5  
The sand in the Alexandria coastal dunefield is derived from the sandy beach which forms the seaward boundary of the dunefield. Sand is blown off the beach onto the dunefield by the high-energy onshore-directed dominant wind. The dunefield has been forming over the past 6500 years. Sand transport rates calculated from dune movement rates and wind data range from 15 to 30 m3 m -1 yr-1 in an ENE direction. The sand transport rate decreases with increasing distance from the sea due to a reduction in wind speed resulting from the higher drag imposed upon the wind by the land surface. Aeolian sand movement rates of this order are typical of dunefields around the world. The total volume of sand blown into the dunefield is 375 000 m3 yr-1. Sand is being lost to the sea by wave erosion along the eastern third of the dunefield at a rate of 45 000 m3 yr -1. The dunefield thus gains 330 000 m3 of sand per year. This results in dunefield growth by vertical accretion at about 1.5 mm yr-1 and landward movement at about 0.25 m yr-1. The dunefield is a significant sand sink in the coastal sand transport system. The rate of deposition in coastal dunefields can be 10 times as high as rates of deposition in continental sand seas. The higher rate of deposition may result from the abundant sand supply on sandy beaches, and the higher energy of coastal winds. Wind transport is slow and steady compared to fluvial or longshore drift transport of sediment, and catastrophic aeolian events do not seem to be significant in wind-laid deposits.  相似文献   

8.
Sand was marked by fluorescent dye in order to trace sand movement and deposition on a longitudinal (seif) sand dune in the Sinai desert. The wind regime was monitored simultaneously. Tracing the dyed sand was possible after light to moderate sand storms and was graphically represented on maps.The dune was subjected to a seasonally bidirectional wind regime, with the wind hitting the dune obliquely on either side. On the windward flank the sand was transported parallel to the wind direction. On the lee flank sand movement was deflected towards parallelism with the crest line. Sand movement was deflected if the dune had a sharp profile which favored separation of wind flow on the lee flank. The deflection depended on the angle of incidence between the wind and the crest line: when the angle of incidence was < 40°, sand on the lee flank was transported parallel to the crest line; when the angle of incidence was nearly perpendicular to the crest, movement along the lee flank abated and deposition occurred. Where the dune was low, flat and blunt, as in a zibar dune, there was no boundary-layer separation and no deflection of sand movement on the lee flank. The deflected movement along the lee flank resulted in elongation of the longitudinal (seif) dune.  相似文献   

9.
本文通过调查黄龙风景区水体的环境地质特征与微生物群落结构及多样性,并与黄石公园对比分析,探讨了两种特殊地理环境下的微生物群落结构和多样性及其对钙华沉积的影响.结果表明:黄龙沟泉水属于地下冷泉,且景区内覆盖着大量植被,水体中有大量藻类和细菌;黄石公园猛犸象温泉区泉水属于地下热泉,植被覆盖率很低,泉水中微生物多为嗜热菌,藻...  相似文献   

10.
为查明四川黄龙核心景区钙华层内水体的循环交替过程及水循环系统结构,采用野外实地调查、水循环断面监测等方法,分析任一监测断面的地下水径流量和地表水流量(二次转化泉形成)组成、循环段内的补给和排泄特征,理清各水循环系统的发育规模、层级.分析结果表明,丰水期水循环系统层级最为复杂,分为区域-局部-场地三个循环层级,以局部循环...  相似文献   

11.
The impact of modern cold glaciers on arid periglacial landscapes has received little attention compared with other glacial regimes, and there is a widely held assumption that cold glaciers are not effective geomorphological agents, despite recent studies to the contrary. This paper focuses on the processes operating at the margins of a number of glaciers in the Dry Valleys of Victoria Land, notably the Wright Lower Glacier. The glaciers are entraining primarily older drift deposits and highly weathered regolith which texturally are sandy gravels, as well as well‐sorted sands of fluvial origin. Despite basal temperatures of the order of ?16°C, frozen layers and blocks of sand and gravel are being incorporated into the base of the glaciers by folding and thrusting. The sedimentary products are ridges and aprons several metres high within which the principal lithofacies are sand, gravel, foliated glacier ice, lake ice and snow. These facies are glaciotectonized strongly. Draped over these landforms is a veneer of well‐sorted aeolian sand up to half a metre thick. Supraglacial streams flowing off the glaciers incise these landforms and the sediment is redeposited as alluvial fans, lake deltas and lake‐bottomset deposits. Overall the sediment/landform association differs markedly from those of other glacial regimes, with sand and gravel being the dominant facies, while the usual indicators of glacier working (such as facets and striations on clasts) are lacking. The preservation potential for these landforms on a thousand‐year time scale is high, as modification in this arid regime by slope processes and running water is limited. Sublimation of buried ice is so slow that ridge features are likely to remain ice‐cored almost indefinitely, modified only by wind transport and weathering.  相似文献   

12.
Wind is the primary control on the formation of aeolian geomorphology. In this study, we combined wind regime data from automated weather stations in the western and southwestern Tengger Desert of the Inner Mongolia region in China with remote‐sensing data to analyse the relationship between the wind energy environment and aeolian geomorphology. Tengger Desert is one of the main dust storm sources in northwestern China. Therefore, efforts aimed at controlling desertification and dust storm require a deeper understanding of the processes that govern the formation and subsequent evolution of dunes in this area. Wind speed was largest in the northwest (3.3 m/s in the Xiqu station) and smallest in the southeast (1.2 m/s in the Haizitan station). Potential sand transport was also largest in the northwest (195 in the Jiahe station) and smallest in the southeast (33 in the Tumen station). The sand‐driving wind (5.92 m/s) directions were from the NW and SE quadrant across the study area, at >76% of all sand‐driving wind, reaching 99% in the Tumen station. The sand‐driving wind in the NW quadrant reached >48%, and in the SE quadrant, >12% of all sand‐driving wind in all stations. In the study area, sand dunes included crescent, dune networks, transverse, and coppice dunes. Dune crest directions had similar trends from upwind to downwind, at 133° in the middle region, and 124° in the southwestern region. Mean dune spacing changed with dune patterns; the maximum spacing for crescent dunes was 147 m, for dune networks 118 m, and for transverse dunes it was 77 m. The mean crest length was 124 m (maximum) for crescent dunes in the northwest, 121 m for transverse dunes, and 84 m for dune networks. However, because of gullies in the southern region, the mean crest length was only 58 m (least) for the crescent dunes in that area. The defect density ranged from 0.007 to 0.014. The spatial differences in dune patterns reflected the evolution of the dune field, where older dunes had been formed upwind and younger downwind. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
About half of the arid and semi-arid lands in the world are deserts that comprise various types of aeolian sand dunes deposits. In Shaanxi Province, aeolian sand dunes cover considerable areas of the Yulin desert and northern Jinbian. Sand dunes are moving in the main wind direction and converting some agricultural area to wasteland. Remote sensing of sand dunes helps in the understanding of aeolian process and desertification. Remote sensing data combined with field studies are valuable in studying sand dunes, regional aeolian depositional history. In particular, active and inactive sand dunes of the north Shaanxi Province were studied using remote sensing and geographic information system. In this study, we describe the Landsat thematic mapper (TM) images, covering north Shaanxi Province, which were used to study the distribution, shape, size, trends, density and movement of sand dunes and their effect on desertification of cultivated lands. Estimation was made depending on soil erodibility factor (Ⅰ) and local climatic factor (C) during the period (June to September). The result indicates that soil erosion caused sand drift of 8.957 5, 7.03 ton for Yulin and Jinbian, respectively. The mean sand dunes movement rate were 4.37, 3.11 m, whereas, monthly sand dune advance rate were 1.092 5, 0.777 5 m, for the two locations, respectively. The study reveals that cultivated lands extended obliquely to the direction of sand dune movement are extremely affected, while other segments that extend parallel to the direction of the movement are not affected. Accordingly the north Shaanxi Province was divided into areas of different classes of potential risk. Moreover, blown sands and sand movement from neighboring highlands also affect the area of western desert.  相似文献   

14.
《Gondwana Research》2015,27(3-4):1216-1221
A country's natural and cultural heritage is created in a unique environment, and for this heritage to survive, it must be preserved in a similar environment. In China, 60 years of afforestation to combat desertification near the Mogao Grottoes and the Crescent Moon Spring have shown that attempts to protect the regional environment have not protected these heritage sites, and may actually have endangered them. Conserving the environment's original state may be the most effective solution for heritage conservation where sites have survived under a specific set of physical and environmental conditions for hundreds or thousands of years and may not be able to survive a new environment. Man-made changes should only be attempted with great care to avoid damaging the conditions that have preserved the natural or cultural heritage in the long term.  相似文献   

15.
Quasi-horizontal trajectories of salting sand grains were found using high-speed video-recording in the desertified territory of the Astrakhan region. The sizes and displacement velocities of the saltating sand grains were determined. A piecewise logarithmic approximation of the wind profile in a quasi-stationary wind–sand flow is suggested, which is consistent with the data of observations and modeling. It was established that, in the regime of stationary saltation, the wind profile in the lower saltation layer of the wind–sand flow depends only slightly on the wind profile variations in the upper saltation layer. The vertical profiles of the horizontal wind component gradient in a quasi-stationary wind–sand flow were calculated and plotted. It was shown using high-speed video recording of the trajectory of a sand grain with an approximate diameter of 95 μm that the weightlessness condition in the desertified territory of the Astrakhan region in a stationary wind–sand flow is satisfied at a height of approximately 0.15 mm. The electric parameters of a wind–sand flow, which can provide for compensation of the force of gravity by the electric force, were estimated. In particular, if the specific charge of a sand grain is 100 μC/kg, the force of gravity applied to the sand grain can be compensated by the electric force if the vertical component of the electric field in a wind–sand flow reaches approximately 100 kV/m. It was shown that the quasi-horizontal transport of sand grains in the lower millimeter saltation layer observed in the desertified territory can be explained by the joint action of the aerodynamic drag, the force of gravity, the Saffman force, the lift force, and the electric force.  相似文献   

16.
北方岩溶大泉流量动态模拟及其管理   总被引:12,自引:0,他引:12       下载免费PDF全文
李砚阁  王力 《水科学进展》1998,9(3):275-281
在充分研究晋祠泉流量动态的基础上,分析了影响晋祠泉流量的主要因素,并利用时间序列分析方法,建立了晋祠泉流量动态的模拟模型,在此基础上,提出煤矿排水管理曲线图的方法来管理晋祠泉域岩溶水资源。  相似文献   

17.
This paper presents the results of a small number of dates from sand samples collected at building sites in the eastern suburbs of Sydney. OSL ages of well-sorted, quartz sand ranges from 31 to 24?ka from within well-developed podzol soil profiles within a metre of the surface. The source of this sand appears to be from the east off the inner continental shelf during a period just prior to the maximum of the Last Glacial Maximum (LGM, Marine Isotope Stage 2) when sea-level was approximately 70–90 m below present level. During a later phase of the LGM, there is evidence from other coastal sites in central NSW and Gippsland, Victoria, that the dominant wind was from the west consistent with evidence from arid and semiarid Australia. Dune orientations in northern NSW into Queensland and other evidence at this time appear to reflect winds from the southeast quadrant. This study highlights the existence of a potential pivot area in dominant wind direction during the LGM between sustained westerly flow in southern area including Victoria and northeast Tasmania and southeast flow of northern NSW into Queensland. In central NSW, the circulation switched from easterly in Stage 2 to westerly as the glacial stage intensified in the LGM sometime after ca 25?ka.  相似文献   

18.
The characteristics of sand and dust movement over different sandy grasslands in China’s Otindag Sandy Land were explored based on field observations and laboratory analyses. Threshold wind speeds (the speed required to initiate sand movement) at a height of 2 m above the ground were estimated in the field for different surface types. Threshold wind speed above shifting dunes in the study area is about 4.6 m s−1 at this height. This value was smaller than values observed above other surfaces, resulting in a greater risk of blowing sand above these dunes. Differences in sand transport rates (STR) as a function of the severity of desertification resulted primarily from differences in surface vegetation cover and secondarily from the soil’s grain-size distribution. STR increased exponentially with increasing near-bed wind velocity. Under the same wind conditions, STR increased with increasing severity of desertification: from 0.08 g cm−2 min−1 above semi-fixed dunes to 8 g cm−2 min−1 above semi-shifting dunes and 25 g cm−2 min−1 above shifting dunes. Vegetation’s affect on STR was clearly large. Different components of sand and dust were trapped over different lands: mostly sand grains but little dust were trapped above shifting dunes, but much dust was collected over semi-shifting and semi-fixed dunes. Human disturbance is likely to produce dust even from fixed dunes as a result of trampling by animals and vehicle travel. In addition, spring rainfall decreased the risk of sand and dust movement by accelerating germination of plants and the formation of a soil crust.  相似文献   

19.
Blown sand has caused considerable damage to the Dunhuang Mogao Grottoes of China. Controlling the blown sand requires a clear understanding of the processes that govern its production and movement. Experiments were conducted in a wind tunnel and in the field to define the relationships between sand production and gravel coverage in the gobi above the Mogao Grottoes. The gravel that covers the gobi’s surface controls wind erosion, irrespective of its shape and size. The equilibrium coverage by gravel over which no further sand is emitted due to wind erosion increases and the equilibration time that is taken to form the equilibrium gravel coverage decreases with increasing wind velocity. Gravel coverage has reached an equilibrium state in the portion of the gobi directly above the grottoes, but decreases towards the Mingsha Mountains. Drifting sand from these mountains is the main source of sand damage at the Mogao Grottoes. If no additional sand from the mountains were supplied to the gobi, gravel pavements would reach an equilibrium level of coverage and prevent further production of blowing sand. Sand blown from the gobi represents secondary reactivation of sediments originally produced in the Mingsha Mountains. Therefore, to control the blowing sand above the Mogao Grottoes, emphasis should be placed on controlling erosion from the Mingsha Mountains rather than local erosion of sand in the gobi.  相似文献   

20.
滑移流对浅水湖泊风浪传播特性影响试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
浅水湖泊等有限风吹程及水深水域的风浪多处于发展阶段,风拖曳表层水体产生的滑移流会对风浪传播特性产生影响,风浪的波速、波长等参数难以通过线性波的理论频散关系获取。为准确预测湖泊风浪参数,在考虑浅水湖泊的有限吹程和水深特征的基础上,利用风洞水槽模拟研究了滑移流对风浪传播特性的影响。结果表明:滑移流、斯托克斯流及表面流均与风速正相关,滑移流与表面流比值随着风速的增加逐渐降低并稳定于75%;滑移流对波速和波长有促进作用,对小尺度波浪的促进作用尤其显著;波浪非线性会抑制滑移流对波速及波长的促进作用;建立了考虑滑移流影响的风浪经验频散关系式以及风浪主频波速经验关系式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号