首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Applied Geochemistry》2003,18(1):117-125
This paper describes the results of a study that was conducted to determine the relationship between hydrogeochemical composition and 87Sr/86Sr isotope ratios of the Mt. Vulture spring waters. Forty samples of spring waters were collected from local outcrops of Quaternary volcanites. Physico-chemical parameters were measured in the field and analyses completed for major and minor elements and 87Sr/86Sr isotopic ratios. A range of water types was distinguished varying from alkaline-earth bicarbonate waters, reflecting less intense water–rock interaction processes to alkali bicarbonate waters, probably representing interaction with volcanic rocks of Mt. Vulture and marine evaporites. The average 87Sr/86Sr isotope ratios suggest at least 3 different sources. However, some samples have average Sr isotope ratios (0.70704–0.70778) well above those of the volcanites. These ratios imply interaction with other rocks having higher 87Sr/86Sr ratios, probably Triassic evaporites, which is substantiated by their higher content of Na, SO4 and Cl. The Sr isotope ratios for some samples (e.g. Toka and Traficante) are intermediate between the value for the Vulture volcanites and that for the local Mesozoic rocks. The salt content of these samples also lies between the value for waters interacting solely with the volcanites and the value measured in the more saline samples. These waters are thus assumed to result from the mixing of waters circulating in volcanic rocks with waters presumably interacting with the sedimentary bedrock (marine evaporites).  相似文献   

2.
The salt waters from the Emilia-Romagna sector of the Northern Apennine Foredeep have been investigated using major and trace element and stable isotope (δ2H, δ18O, δ37Cl, δ81Br and 87Sr/86Sr ratio). Ca, Mg, Na, K, Sr, Li, B, I, Br and SO4 vs. Cl diagrams suggest the subaerial evaporation of seawater beyond gypsum and before halite precipitation as primary process to explain the brine’s salinity, whereas saline to brackish waters were formed by mixing of evaporated seawater and water of meteoric origin. A diagenetic end-member may be a third component for mud volcanoes and some brackish waters. Salinization by dissolution of (Triassic) evaporites has been detected only in samples from the Tuscan side of the Apennines and/or interacting with the Tuscan Nappe. In comparison with the seawater evaporation path, Ca–Sr enrichment and Na–K–Mg depletion of the foredeep waters reveal the presence of secondary processes such as dolomitization–chloritization, zeolitization–albitization and illitization. Sulfate concentration, formerly buffered by gypsum-anhydrite deposition, is heavily lowered by bacterial and locally by thermochemical reduction during burial diagenesis. From an isotopic point of view, data of the water molecule confirm mixing between seawater and meteoric end-members. Local 18O-shift up to +11‰ at Salsomaggiore is related to water–rock interaction at high temperature (≈150°C) as confirmed by chemical (Mg, Li, Ca distribution) and isotopic (SO4–H2O) geothermometers. 37Cl/35Cl and 81Br/79Br ratios corroborate the marine origin of the brines and evidence the diffusion of halogens from the deepest and most saline aquifers toward the surface. The 87Sr/86Sr ratio suggests a Miocene origin of Sr and rule out the hypothesis of a Triassic provenance of the dissolved components for the analyzed waters issuing from the Emilia-Romagna sector of the foredeep. Waters issuing from the Tuscan side of the Apennines and from the Marche sector of the foredeep show higher 87Sr/86Sr ratios because of the interaction with siliciclastic rocks.  相似文献   

3.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

4.
The isotopic composition of Sr has been measured in 73 formation-water samples from Paleozoic strata in the Illinois basin; 87Sr/86Sr ratios range from 0.7079 to 0.7108. With the exception of four samples, the waters are more radiogenic than corresponding Paleozoic sea-water values. The relatively narrow range of slightly elevated 87Sr/86Sr rations is uniformly distributed in waters throughout the stratigraphic column and in Silurian waters across the basin. Isotopic analyses of core samples from reservoir rocks show an absence of water-rock Sr isotopic equilibration. Basin lithology and analyses of detrital rock units indicate that clay minerals in shales and in quartz sandstone matrices represent the only significant source of radiogenic Sr for the waters. Silurian and Devonian water show a two-component mixing relation which suggests that they comprise a single hydrogeological system that evolved when radiogenic water from New Albany shales entered Silurian-Devonian carbonate rocks and mixed with marine interstitial water. Regional migration of the waters and associated petroleum within the Silurian-Devonian strata, proposed in other studies, is consistent with the Sr isotopic data. Under favorable circumstances subsurface waters are capable of retaining a Sr isotopic recor of their evolution.  相似文献   

5.
Thirty-one selected volcanic rocks from the Myoko volcano group which comprises a volcanic chain of four independent volcanoes of Quaternary to Recent age are analyzed for 87Sr/86Sr ratios. The rocks of the lizuna volcano, the oldest among the Myoko volcano group, have higher 87Sr/86Sr ratios and show a larger scatter ranging from 0.70437 to 0.70556 than those of other volcanoes. The Kurohime volcanic rocks have a restricted range of 87Sr/86Sr ratios (0.70403∼0.70435). 87Sr/86Sr ratios of the Myoko volcanic rocks are almost the same in average to those of the Kurohime volcanic rocks, although somewhat varied ranging from 0.70378 to 0.70461. A single analysis of the Yakeyama volcanic rock yielded a 87Sr/86Sr ratio of 0.70427. A characteristic pattern in 87Sr/86Sr ratios is observed through the volcanic activity of the Myoko volcano group; 87Sr/86Sr ratios are high in the early stage of the volcanic activity and then decrease to low values, the late eruptives being characterized by constant 87Sr/86Sr ratios. The negative correlation between 87Sr/86Sr and Rb/Sr, and positive correlation between 87Sr/86Sr and Sr found in the rocks of the Iizuna volcano are interpreted to show the occurrence of contamination by materials with high 87Sr/86Sr ratios (>0.7056), low Rb/Sr ratios (<0.01) and high Sr contents (>300 ppm). Sialic crustal contamination may have played only a minor role.  相似文献   

6.
《Applied Geochemistry》2005,20(8):1571-1586
87Sr/86Sr ratio variations were analyzed in rainfall, shallow ground water and base flow collected from 4 Piedmont streams within the Middle Oconee River basin in northeastern Georgia during the period between March, 2003 and March, 2004. They Sr isotope ratio analyses were accompanied by measurements of stream discharge, rainfall, stable O isotope ratios and major ion and 3H concentrations. The average Sr ion concentration and 87Sr/86Sr ratio for the terminal stream basin (the Middle Oconee River) were 23.6 μg/L and 0.7172, respectively. The average 87Sr/86Sr ratios of the rainwater and shallow ground water were below 0.7125, indicating that most of the Sr in this stream water is input by weathering reactions in deeper ground water, rather than by ion exchange in shallow soil horizons. This is consistent with the higher alkalinity concentrations (∼23–47 mg/L) and specific conductance values (60–113 μS/cm) that characterize stream base flow. Piedmont streams are characterized by lower concentrations of Sr and higher 87Sr/86Sr ratios than average global stream flow.Base flow rates decreased by a factor of 2–3 during the summer months and this is accompanied by increased alkalinity concentrations. 87Sr/86Sr ratios, however, were temporally invariant for a given stream basin and were independent of season, antecedent rainfall, and discharge. 87Sr/86Sr ratios were unique for each of the 4 basins and a general trend toward higher ratios with increasing basin area was apparent. The inferred contribution from minerals with high Rb contents such as K feldspar and muscovite may have resulted from the greater integration of flow from mineralogically diverse pathways afforded by a larger basin area. The basin specificity and temporal or seasonal invariability make 87Sr/86Sr ratios an invaluable hydrological tracer that can be readily employed in mass balance studies of stream flow within the Piedmont Province.  相似文献   

7.
《Applied Geochemistry》2001,16(9-10):1269-1284
Chemistry of major and minor elements, 87Sr/86Sr, δD, and δ18O of oilfield waters, and 87Sr/86Sr of whole rock were measured from Paleozoic strata in the Central Tarim basin, NW China. The aim is to elucidate the origin and migration of formation water and its relation to petroleum migration. High salinity oilfield waters in Carboniferous, Silurian and Ordovician reservoirs have maintained the same Na/Cl ratio as seawater, indicative of subaerially evaporated seawater. Two possible sources of evaporitic water are Carboniferous (CII) and Cambrian, both of which contain evaporitic sediments. Geographic and stratigraphic trends in water chemistry suggest that most of the high salinity water is from the Cambrian. Strontium, H and O isotopes as well as ion chemistry indicate at least 3 end member waters in the basin. High-salinity Cambrian evaporitic water was expelled upward into Ordovician, Silurian and Carboniferous reservoirs along faults and fractures during compaction and burial. Meteoric water has likely invaded the section throughout its history as uplift created subaerial unconformities. Meteoric water certainly infiltrated Silurian and older strata during development of the CIII unconformity and again in recent times. Modern meteoric water enters Carboniferous strata from the west and flows eastward, mixing with the high salinity Cambrian water and to a lesser degree with paleometeoric water. The third end member is highly radiogenic, shale-derived water which has migrated eastward from the Awati Depression to the west. Enrichment of Ca and Sr and depletion of K, Mg, and SO4 relative to the seawater evaporation trajectory suggest waters were affected by albitization of feldspars, dolomitization, illitization of smectite, and SO4 reduction. The mixing of meteoric water occurred subsequently to seawater evaporation, main water-rock interactions, and brine migration. The direction of brine migration is consistent with that of petroleum migration, suggesting water and petroleum have followed the same migration pathways.  相似文献   

8.
87Sr/86Sr ratios of fourteen unaltered limestone and six fossil samples show a range of 0.7066-0.7118 for the depositional water of the Middle to Upper Pennsylvanian Madera Formation. The variation of these 87Sr/86Sr ratios may be due to the restricted depositional basin and nature of the source of the Madera Formation.While fossil and limestone samples are equally good for determination of strontium isotopic composition of depositional waters, leaches of calcareous shales contain significant amount of 87Sr leached from the noncarbonate fraction during acid treatment.  相似文献   

9.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

10.
Taiwan is a typical active orogenic belt situated at the collision boundary between the Eurasian Continental Plate and the Philippine Sea Plate. Dissolved major and trace constituents, as well as Sr and Sr isotopes in river waters collected from the Danshuei River basin in northern Taiwan have been studied to evaluate chemical weathering processes. The results of principal component analysis show that the ion sources in these river waters can be categorized into 3 major components: chemical weathering, seasalt contribution and local anthropogenic input. The chemical weathering is the most dominant factor that contributes about 85% of total variances. Significantly increased Na/Cl and Ca/Cl, as well 87Sr/86Sr, were observed in most upper stream samples. The Na/Cl and Ca/Cl ratios in the Dahan Stream, however, are much higher than the Shindien Stream. Even though average rainfall is stronger in the Shindien drainage basin, chemical evidence from river waters supports less intense weathering in the region. Selective dissolution of secondary calcites explains the observed high Ca/Cl, Sr/Cl and Ca/Na in the Dahan Stream. These results highlight the potential importance of tectonic factors, such as uplift and physical erosion in studying chemical weathering in an active orogenic belt.  相似文献   

11.
River water composition (major ion and 87Sr/86Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L−1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L−1), with radiogenic 87Sr/86Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and 87Sr/86Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO2/Ca and 87Sr/86Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO2/Ca and 87Sr/86Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin.  相似文献   

12.
Initial 87Sr/86Sr ratios have been plotted against time of formation for various rock-types in the Schwarzwald and Vosges basement areas. These data exhibit strong positive correlations between the two variables. The Schwarzwald data define two distinct trend lines on the diagram, for the time span 500 to 250 Ma ago. The first comprises the data from orthogneisses, diatexites and pre-tectonic granites and documents the Sr isotope evolution in the crust underlying the Sehwarzwald. This region of the crust had a 87Rb/86Sr ratio of about 1. The other is delineated by data points from the post-tectonic plutons. These form a band corresponding to the development of closed systems with 87Rb/86Sr ratios of between 10 and 20 as indicated by the slope of the band. The second trend is interpreted as resulting from the formation of large, stable, deep-seated magma chambers formed by segregation of anatectic melts during a phase of tectonism 330Ma ago. The high 87Rb/86Sr ratios of these magmas arose by fractional crystallization, in response to tectonic decompression, during the coalescence of the presumedly water-saturated melts. Data for rocks from the Vosges, taken from the literature, form a single development line. Its slope corresponds to a 87Rb/86Sr ratio of about 5 and the line is analogous to the second trend line defined by the Schwarzwald data. The differences in the Rb/Sr systematics between the two areas can be explained as resulting from the deeper level of erosion in the Vosges. An important implication for Rb/Sr studies is that co-magmatic rocks can have very different initial 87Sr/86Sr ratios so that discrepancies in this ratio between rock-types cannot be used to divide plutons into genetic suites. On the other hand essential information is contained in the Rb/Sr systematics of orogenic magmatic rocks, such as the Variscan plutons in the Schwarzwald, that cannot be obtained from geochemical and petrological studies alone.  相似文献   

13.
Bransfield Strait is a narrow basin separating the South Shetland Islands from the Antarctic Peninsula and is attributed to recent back-arc extension behind the South Shetland volcanic arc. The volcanic islands of Deception and Bridgeman are situated close to the axis of spreading, whereas Penguin Island lies slightly to the north of this axis. The mineralogy, petrology and geochemistry of the lavas of the three volcanoes have been studied in order to provide information on the nature of magmatism associated with the initial stages of back-arc spreading.Deception Island lavas range from olivine basalt to dacite, and all are highly sodic, with high Na/K, K/Rb, Ba/Rb and Zr/Nb ratios and with CeN/YbN = 2. Incompatible elements increase systematically between basalt and rhyodacite, while Sr decreases, suggesting that fractional crystallisation is the dominant process relating lava compositions. The rhyodacites have high concentrations of Zr, Y and the REE and negative Eu anomalies and are compositionally similar to oceanic plagiogranite. Bridgeman Island lavas are mostly basaltic andesites, but the levels of many incompatible elements, including REE, are significantly lower than those of Deception lavas, although CeN/YbN ratios and 87Sr/86Sr ratios (0.7035) are the same. Penguin Island lavas are magnesian, mildly alkaline olivine basalts with a small range of composition that can be accommodated by fractional crystallisation of olivine, clinopyroxene and/or chromite. Penguin lavas have higher 87Sr/86Sr (0.7039) and CeN/ YbN (4) ratios than Deception and Bridgeman lavas. The Rb/Sr ratios of Deception and Penguin basalts (ca. 0.01) are much too low to account for their present 87Sr/86Sr ratios.Modelling suggests that the source regions of the lavas of the three volcanoes share many geochemical features, but there are also some significant differences, which probably reflects the complex nature of the mantle under an active island arc combined with complex melting relationships attending the initial stages of back-arc spreading. Favoured models suggest that Bridgeman lavas represent 10–20% melting and the more primitive Deception lavas 5–10% melting of spinel-peridotite, whereas Penguin lavas represent less then 5% melting of a garnet-peridotite source. The mantle source for Bridgeman lavas seems to have undergone short-term enrichment in K, Rb and Ba, possibly resulting from dewatering of the subducted slab. Hydrous melting conditions may also account for the more siliceous, high-alumina nature and low trace element contents of Bridgeman lavas.  相似文献   

14.
M.H. Dodson 《Lithos》1982,15(3):215-219
A general null hypothesis for isotope geochemistry states that the isotopic composition of an element is independent of its concentration or any other geochemical property of the population. ‘Spurious’ correlations between the ratios 87Sr/86Sr and 87Rb/86Sr (orRb/Sr), due to the common denominator effect, may be ruled out because they contradict this null hypothesis. Mixing processes may be regarded as geochemical counterparts of the common denominator effect. In geochronological systems which satisfy the basic assumptions of the Rb-Sr isochron method observed correlations between Sr isotope abundance and Sr concentration must be secondary to the direct causal dependence of 87Sr/86Sr upon Rb/Sr ratios.  相似文献   

15.
《Applied Geochemistry》1988,3(2):173-176
The87Sr/86Sr ratios of 10 formation waters in petroleum and natural gas reservoirs along the western coast of northeastern Honshu, Japan, ranged from 0.7052 to 0.7084, and are distinctly lower than the ratio in seawater. This forms a marked contrast to oil-field brines from the U.S.A. which have higher87Sr/86Sr ratios. Taking into consideration that petroleum and natural gas in Japan accumulate in volcanic rocks derived from intense submarine volcanism in the Middle Miocene, the87Sr/86Sr ratios of the water samples are explained in terms of the isotope exchange between waters containing seawater Sr and reservoir rocks with lower ratios.  相似文献   

16.
《Applied Geochemistry》1993,8(4):403-407
The Cl isotope ratio, mass37Cl/35Cl, was measured on 22 formation waters from Mississippian, Devonian, Silurian, Ordovician and Cambrian strata in the Michigan Basin. Because of its resistance to fractionation, the ratio was used to find evidence of mixing of formation waters within the Michigan Basin and between the Canadian Shield and the basin. The δ37Cl composition of waters decreased from +0.05 to −0.55 (per mil difference from SMOC, precision of 0.16) with age of the strata among Devonian, Silurian, Ordovician and Cambrian samples from the basin margin. Mississippian samples from the middle of the basin were isotopically heaviest at +0.1. Ordovician samples, also from mid-basin, were isotopically lightest at −1.2. On plots of δ37 Cl vs Cl/Br and δ37 Cl vs87Sr/86Sr samples at the basin margin trend toward enrichment in35Cl and87Sr and increasing Cl/Br suggesting interformational mixing of the waters. On a δ37 ClCl/Br plot, three samples not on this trend and tending toward high Cl/Br may reflect evaporite dissolution. Canadian Shield Waters were plotted with Michigan Basin waters on the graphs of δ37 Cl vs Ca/Cl and δ37 Cl vs K/Cl. On both plots data fall along linear trends of35Cl depletion with Ca/Cl increase and with K/Cl decrease. Ordovician waters from the middle of the basin and shield waters are end members on the plots. The results suggest that despite water-rock interactions, δ37 Cl data may be useful in studies of mixing relations in formation waters.  相似文献   

17.
John C. Butler 《Lithos》1982,15(3):207-214
The rubidium-strontium isochron procedure has proven to be a powerful tool in many geochemical studies. An isochron is said to exist if a plot of (87Sr/86Sr) versus (87Rb/86Sr) produces a linear trend with a large correlation coefficient. However, the variables selected to portray the isochron have the same denominator (86Sr) and Pearson long ago noted that a large correlation could be induced when such ratios are formed from uncorrelated numerators and denominators. A set of numerical experiments are described that illustrate the common denominator effects as applied specifically to rubidium-strontium systematics. For at least one previously published RbSr isochron it can be shown that the common denominator effect is capable of producing a correlation coefficient that is very nearly 1.000. However, it is also shown that, for the data sets analyzed, the common denominator effect can not produce a geologically meaningful isochron. The numerical approach to assessing the common denominator effect can be applied only to those sets of isotopic analyses in which 87Rb and 86Sr have been determined by isotope dilution techniques. For the many data sets in which only the ratios (87Sr/86Sr) and (87Rb/86Sr) have been determined the common denominator effect can neither be assessed nor dismissed as trivial.  相似文献   

18.
《Applied Geochemistry》2000,15(5):599-609
The effects of agriculture on the isotope geochemistry of Sr were investigated in two small watersheds in the Atlantic coastal plain of Maryland. Stratified shallow oxic groundwaters in both watersheds contained a retrievable record of increasing recharge rates of chemicals including NO3, Cl, Mg, Ca and Sr that were correlated with increasing fertilizer use between about 1940 and 1990. The component of Sr associated with recent agricultural recharge was relatively radiogenic (87Sr/86Sr=0.715) and it was overwhelming with respect to Sr acquired naturally by water–rock interactions in the oxidized, non-calcareous portion of the saturated zone. Agricultural groundwaters that penetrated relatively unoxidized calcareous glauconitic sediments at depth acquired an additional component of Sr from dissolution of early Tertiary marine CaCO3 (87Sr/86Sr=0.708) while undergoing O2 reduction and denitrification. Ground-water discharge contained mixtures of waters of various ages and redox states. Two streams draining the area are considered to have higher 87Sr/86Sr ratios and NO3 concentrations than they would in the absence of agriculture; however, the streams have consistently different 87Sr/86Sr ratios and NO3 concentrations because the average depth to calcareous reducing (denitrifying) sediments in the local groundwater flow system was different in the two watersheds. The results of this study indicate that agriculture can alter significantly the isotope geochemistry of Sr in aquifers and streams and that the effects could vary depending on the types, sources and amounts of fertilizers added, the history of fertilizer use and groundwater residence times.  相似文献   

19.
The Nandong Underground River System (NURS) is located in a typical karst area dominated by agriculture in SE Yunnan Province, China. Groundwater plays an important role in the social and economical development in the area. The effects of human activities (agriculture and sewage effluents) on the Sr isotope geochemistry were investigated in the NURS. Seventy-two representative groundwater samples, which were collected from different aquifers (calcite and dolomite), under varying land-use types, both in summer and winter, showed significant spatial differences and slight seasonal variations in Sr concentrations and 87Sr/86Sr ratios. Agricultural fertilizers and sewage effluents significantly modified the natural 87Sr/86Sr ratios signature of groundwater that was otherwise dominated by water-rock interaction. Three major sources of Sr could be distinguished by 87Sr/86Sr ratios and Sr concentrations in karst groundwater. Two sources of Sr are the Triassic calcite and dolomite aquifers, where waters have low Sr concentrations (0.1-0.2 mg/L) and low 87Sr/86Sr ratios (0.7075-0.7080 and 0.7080-0.7100, respectively); the third source is anthropogenic Sr from agricultural fertilizers and sewage effluents with waters affected having radiogenic 87Sr/86Sr ratios (0.7080-0.8352 for agricultural fertilizers and 0.7080-0.7200 for sewage effluents, respectively), with higher Sr concentrations (0.24-0.51 mg/L). Due to the overlapping 87Sr/86Sr ratios, it is difficult to distinguish the sources of Sr in groundwater samples contaminated by agricultural fertilizers or sewage effluents based only on their 87Sr/86Sr ratios. However, 87Sr/86Sr ratios do provide key information for natural and anthropogenic sources in karst groundwater.  相似文献   

20.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号