首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Elemental abundances of the early A stars ε Ser, 29 Vul and σ Aqr are derived consistently with previous studies of this series using spectrograms obtained with Reticon and CCD detectors. The derived abundances confirm that ε Ser is a definite Am star. 29 Vul shows evidence for a weakly operating Am star phenomenon. σ Aqr, a hot Am star prototype, has abundances similar to those of o Peg, another class prototype.  相似文献   

2.
3.
Elemental abundances of the superficially normal early and middle B starsζ Dra, ε Lyr, 8 Cyg and 22 Cyg are derived, consistent with previous studies in this series, using spectrograms obtained with Reticon and CCD detectors. Almost all of the derived metal abundances are found to be solar within the errors of the analysis. However, the He/H ratios are slightly greater than solar.  相似文献   

4.
Elemental abundances of 28 And (A7 III) and 99 Her (F7 V), which have modest rotational velocities, are derived in a manner consistent with previous studies in this series of papers. The values for 28 And, a δ Scuti variable, show that it is slightly metal-poor, but not a classical Am star. 99 Her, which is somewhat more metal-poor, has a rather small microturbulence for its spectral type.  相似文献   

5.
This series of high quality elemental abundance analyses of mostly Main Sequence normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the 1.22‐m Dominion Astrophysical Observatory telescope's coudé spectrograph. Here we expand the range of stars examined to include two relatively quiescent F supergiants. ν Her (F2 II) and 41 Cyg (F5 Ib‐II) are analyzed as consistently as possible with previous studies. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. High signal‐to‐noise spectrograms and high quality atomic data were employed. The derived values of these photometrically constant stars are somewhat different with the abundances of ν Her being somewhat metal‐poor and those of 41 Cyg being crudely solar‐like. Our analyses indicate that the basic results of Luck & Wepfer (1995) who also studied ν Her and 41 Cyg are not likely to be significantly changed by new studies of all their stars. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
This paper presents extended analyses of β UMa (A0mA1 IV‐V), α Dra (A0 III), π Dra (A2 IIIs), and κ Cep (B9 III) which have previously been studied in this series. α Dra is a metal‐poor star while κ Cep has solar abundances. Both β UMa and π Dra are Am stars. Whenever possible, more accurate and precise gf values replace older values. High S/N (200+) and high dispersion Dominion Astrophysical Observatory spectrograms to the red of previously obtained spectra supplement the observations. The derived rotational velocities are 45, 25, 26, and 23 km s–1, respectively. These LTE fine analyses use the ATLAS9 and the WIDTH9 programs of R. L. Kurucz. The results of the extended and the previous analyses are in good agreement. Thus in the past decade a significant improvement in the system of gf values has not been achieved although for many lines there have been changes. The use of additional regions has increased the quality of some results (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
This series of high quality elemental abundance analyses of mostly main‐sequence band normal and peculiar B, A, and F stars defines their properties and provides data for the comparison with the analyses of somewhat similar stars and with theoretical predictions. Most use high dispersion and high S/N (≥ 200) spectrograms obtained with CCD detectors at the long camera of the Coudé spectrograph of the 1.22‐m Dominion Astrophysical Observatory telescope. Here we reanalyze 21 Aql with better quality spectra and increase the number of stars consistently analyzed in the spectral range B5 to A2 by analyzing three new stars for this series. In the early A stars the normal and non‐mCP stars have abundances with overlapping ranges. But more stars are needed especially in the B5 to B9 range. ξ2 Cet on average has a solar composition with a few abundances outside the solar range while both 21 Aql and ι Aql have abundances marginally less than solar. The abundances of ι Del are greater than solar with a few elements such as Ca being less than solar. It is an Am star (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We examine the sharp‐lined stars HR 6455 (A3 III, v sin i = 8.7 km s–1) and η Lep (F2 V, v sin i = 13.5 km s–1) as well as δ Aqr (A3 V, v sin i = 81 km s–1) and 1 Boo (A1 V, v sin i = 59 km s–1) to increase the number consistently analyzed A and F stars using high dispersion and high S/N (≥200) spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22‐m telescope of the Dominion Astrophysical Observatory. Such studies contribute to understanding systematic abundance differences between normal and non‐magnetic main‐sequence band chemically peculiar A and early F stars. LTE fine analyses of HR 6455, δ Aqr, and 1 Boo using Kurucz's ATLAS suite programs show the same general elemental abundance trends with differences in the metal richness. Light and iron‐peak element abundances are generally solar or overabundant while heavy element and rare earth element abundances are overabundant. HR 6455 is an evolved Am star while δ Aqr and 1 Boo show the phenomenon to different extents. Most derived abundances of η Lep are solar (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号