首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Nobeyama Millimeter Array Survey for protoplanetary disks has been made for 19 protostellar IRAS sources in Taurus; 13 of them were optically invisible protostars and 6 were young T Tauri stars. We observed 98-GHz continuum and CS(J = 2 – 1) line emissions simultaneously with spatial resolutions of 2 . 8-8 . 8 (360-1,200 AU). The continuum emission was detected from 5 out of 6 T Tauri stars and 2 out of 13 protostar candidates: the emission was not spatially resolved and was consistent with being originated from compact circumstellar disks. Extended CS emission was detected around 2 T Tauri stars and 11 protostar candidates. There is a remarkable tendency for the detectability of the 98-GHz continuum emission to be small for protostar candidates. This tendency is explained if the mass of protoplanetary disks around protostars is not as large as that around T Tauri stars; the disk mass may increase with the increase of central stellar mass by dynamical accretion in the course of evolution from protostars to T Tauri stars.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

2.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

3.
We have obtained infrared colors and limiting magnitudes from 1.25–4.8µm for a sample of 26 of the cm continuum radio sources located in the core of the Oph molecular cloud. Their colors demonstrate that the majority of the sources appear to be heavily reddened objects surrounded by circumstellar accretion disks. In these cases the radio emission most likely diagnoses accretion driven energetic outflow phenomena: either ionized winds or possibly synchrotron emission from shocked gas associated with stellar jets.  相似文献   

4.
V. P. Grinin 《Astrophysics》2000,43(4):446-457
A young binary system is considered, having a mass ratio of components M 2/M 1 1, in which the low-velocity part of the stellar wind of the low-mass component (the so-called disk wind) can be partially captured by the gravitation of the primary component. It is shown that a large-scale redistribution of matter and angular momentum between the inner and outer parts of the gas-dust disk surrounding the binary system occurs as a result, with a consequent increase in the rate of accretion onto the primary component. In cases in which the orbital eccentricity of the secondary component is nonzero, modulation of the rate of accretion onto the primary component should be observed with a period equal to the orbital period, while in the case of a highly elongated orbit the mass accretion acquires a pulsed character. Since dust may be present in the disk wind from the secondary component, the capture of stellar wind will result in an increase in the effective geometrical thickness of the gas-dust disk. For this reason, the infrared (IR) emission excesses of such stars (especially in the near-IR range) and their intrinsic polarization can be considerably greater than in the case of a single star surrounded by a circumstellar disk of the same mass, and a periodic component may also be present in their behavior with time. Moreover, because of disruption of the axial symmetry in the dust distribution in the vicinity of the young binary system, the orbital period may also be present in its brightness variations. The role of these effects in the physics of young stars is discussed.  相似文献   

5.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

6.
We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E ≳ 10 keV exerts a significant influence on the vertical structure of the accretion disk at a distance R ≳ 1010 cm from the neutron star. At a distance R ∼ 1011 cm, where the total surface density in the disk reaches Σ0 ∼ 20 g cm−2, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature T atm ≈ (2–3) × 106 K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a ≲10% accuracy in the range of X-ray photon energies E < 20 keV.  相似文献   

7.
We show that the set of observational characteristics for low-mass X-ray binaries in the optical and X-ray bands can be explained in terms of the model of an optically thick accretion disk with an atmosphere irradiated by a central X-ray source. We show that this set of observational data can be successfully used to measure the orbital inclination of a binary, the geometric parameters of its accretion disk, and the reprocessing time of X-emission to optical one. For the burster GS 1826-238, a low-mass X-ray binary with a neutron star, we have estimated the binary inclination and the thickness of the disk atmosphere at the outer edge from the mean optical flux and the amplitude of periodic modulations in the optical light curve: i = 62.5° ± 5.5° and H d/R d = 0.145 ± 0.009. The optical response time of the binary to an X-ray burst disagrees with the geometric delay in the propagation of X-ray photons in the binary. We believe that this points to a finite X-ray reprocessing/reradiation time, 1.0 s ≲ τ repr ≲ 2.2 s, in the hot atmosphere above the accretion disk.  相似文献   

8.
We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disk, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disk material. While thermal emission can not drive accretion on its own, we show that along with disk heating it does nonetheless result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity‐driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi‐color disk is ∼0.4rs/r, where rs is the Schwarzschild radius of the black hole. We briefly highlight the key similarties between this effect and the closely related Poynting‐Robertson effect (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
Summary. Recent papers dealing with the most controversial aspects of AGNs are reviewed. They suggest interesting conclusions: all Seyferts can be described by a single parameter, the X-ray column density; radio loud AGNs may host a rapidly spinning black hole and radio quiet AGNs a slowly spinning black hole; high-ionization AGNs (Seyfert galaxies and QSOs) contain an optically thick, geometrically thin accretion disk, while low-ionization AGNs (Liners) contain an optically thin, geometrically thick accretion disk; a number of blazars have been classified as BLLs on the basis of insufficient data; most objects with weak broad emission lines are in fact HPQs; many objects have been called Liners although they are not AGNs but rather the result of stellar activity; type 2 QSOs exist, but are quite inconspicuous if radio quiet. Received 16 November 1999 / Published online: 15 February 2000  相似文献   

11.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

12.
假设位于黑洞赤道面上做圆形轨道运动的吸积盘是几何薄、光学厚的.利用光子追踪法计算在Kerr度规下的光子运动轨迹,通过数值计算研究薄吸积盘的相对论谱线轮廓及成像.在大角度观测时,吸积盘下表面的光子对谱线轮廓及成像的影响是显著的.  相似文献   

13.
Jan Kuijpers 《Solar physics》1989,121(1-2):163-185
An overview is given of the observations of stellar radio flares, defined as radio emission which is both variable in time and created by explosive releases of magnetic energy. The main sources of such flares are late-type Main-Sequence stars, classic close binaries, X-ray binaries, and pre-Main-Sequence stars.We summarize the interpretations of these observations in terms of the various incoherent and coherent emission mechanisms. The possible importance of a coherent emission process in electrostatic double layers is pointed out.We briefly indicate the diagnostic importance of radio emission for the flare process in classic and compact stars. In particular we discuss the possible production of radio flares from interactions between an accretion disk and the magnetic field of the central object.  相似文献   

14.
Planetesimals orbiting a protostar in a circumstellar disk are affected by gravitational interaction among themselves and by gas drag force due to disk gas. Within the Kyoto model of planetesimal accretion, the migration rate is interpreted as the inverse of the planetary formation time scale. Here, we study time scales of gravitational interaction and gas drag force and their influence on planetesimal migration in detail. Evaluating observations of 86 T Tauri stars (Beckwithet al., 1990), we find the mean radial temperature profile of circumstellar disks. The disk mass is taken to be 0.01M in accordance with minimum mass models and observed T Tauri disks. The time scale of gravitational interaction between planetesimals is studied analogously to Chandrasekhar's stellar dynamics. Hence, Chandrasekhar's coefficient , defined as the fraction between the mean separation of planetesimals and the impact parameter, plays an important role in determining the migration rate. We find ln to lie between 5 and 10 within the protosolar disk. Our result is that, at the stage of disk evolution considered here, gas drag force affects the radial migration of planetesimals by a few orders of magnitude more than gravitational interaction.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

15.
We analyse conditions of the innermost portion of an accretion disk and establish a set of equations for this region. A stable innermost region may exist, which can probably explain the observed UV and X-ray spectra, avoiding the unstable emission. We then discuss the detailed radial structure of a disk around a black hole for typical AGN parameters and obtain different kinds of- relationships for different regions of a disk. On the basis of this, we discuss the stability. A new type of cycle is present, which we call a double S shaped cycle. In this cycle, the extent of accretion rate variability is much larger than that in dwarf nova cycles. This probably solves the problem of violent variability of AGN. In the meantime, the very high accretion rate at the hottest state in limit cycles in the unstable region may provide continuous injection of matter to the jet and power the relativistic motion of the jet.  相似文献   

16.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

17.
High-frequency quasi-periodic variations (HF QPOs) in the X-ray light curves of black hole X-ray novae can be understood as oscillations of the accretion disk in a nonlinear 3:2 resonance. An m = 0 vertical oscillation near a black hole modulates the X-ray emission through gravitational lensing (light-bending) at the source. Certain oscillations of the accretion disk will also modulate the mass accretion rate, and in neutron-star systems this would lead to nearly periodic variations in brightness of the luminous boundary layer on the stellar surface – the amplitude of the neutron-star HF QPOs would be thus increased relative to the black hole systems. The “kHz QPOs” in black holes are in the hecto-Hz range.  相似文献   

18.
We summarize results from deep spectroscopic observations of the HD 209458 planetary system, carried out with the Hubble Space Telescope—Cosmic Origins Spectrograph. Orbitally resolved observations are used to show that hot gas emission lines, arising only in the stellar atmosphere, are not variable, while lower ionizations species found in the upper atmosphere of the hot Jupiter HD 209458b absorb stellar photons during transit. For both C II and Si III, we find mean transit attenuation of ~8%. The firm detection of silicon is in direct conflict with previous low-resolution studies, which we attribute to long-term variability in the system. We also use these observations to search for auroral emission from the planet, detecting a statistically significant emission feature at 1582 Å that is consistent with H2 photoexcited by stellar O I photons.  相似文献   

19.
Radio and optical images of early-type galaxies with dust lanes have been analyzed in order to investigate the characteristics of the radio emission and to compare it with their properties at other frequencies. Except three galaxies, the remaining sources of our sample have diffuse radio emission, which does not extend beyond the stellar disk. The radio structures are small and weak (linear sizes in the range 2–10 kpc and radio powers in the range 5×1020–5×1021W Hz–1). Our preliminary results show that in a minority of cases (the most powerful radio sources) radio emission originates in the associated galactic nuclei, where a massive black hole is harboured. On the contrary, in the less powerful among our radio galaxies, sources originating from stellar phenomena may play and important role. We have classified the galaxies with respect to the dust lane morphology, comparing it with the radio emission. The sample is too small in order to reach firm conclusions, but the lack of radio sources in early-type galaxies with dust lanes along the galaxy minor axis seems to suggest that the accretion of material does not reach the conditions necessary to trigger nuclear activity.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

20.
Simulation calculations have been made to examine the modification effect of a hot X-ray photon field on a-ray spectrum by the photon-photon pair production and inverse Compton scattering processes. The Cyg X-3 system was used as a paradigm. It is shown that a-ray spectrum can change significantly when passing through the ambient keV X-ray photon field of an accretion binary source. For Cyg X-3, a significant amount of r-rays originated near the central source in the range of 102-104 MeV could be absorbed by the extended X-ray photons from accretion disk corona in a high X-ray luminosity state and, on the other hand, the inverse Compton effect of secondary electrons could cause a considerable increase in intensity of-rays between ~ 10 MeV and ~ 50 MeV. The relevance of the absorption effect for observations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号