首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Baghdadite from Fuka, Okayama Prefecture, Japan shows a bright yellow fluorescence under UV (Hg 253.7 nm) excitation. The photoluminescence (PL) spectrum at 300 K consists of one large band near 580 nm and two small UV bands at 318 and 397 nm. The optical excitation spectrum of the bright yellow fluorescence consists of two bands near 220 and 250 nm. The temperature dependence of the PL intensity exhibits linear thermal quenching. To reveal the origin of the bright yellow fluorescence from baghdadite, powder Ca3(Zr,Ti)Si2O9 crystals are synthesized. Synthetic Ca3(Zr,Ti)Si2O9 shows luminescence spectra similar to those of baghdadite, and the intensity of the yellow fluorescence is markedly increased by titanium addition. The origin of the bright yellow fluorescence from baghdadite is ascribed to the existence of titanium.  相似文献   

2.
Phase transitions in MgGeO3 and ZnGeO3 were examined up to 26 GPa and 2,073 K to determine ilmenite–perovskite transition boundaries. In both systems, the perovskite phases were converted to lithium niobate structure on release of pressure. The ilmenite–perovskite boundaries have negative slopes and are expressed as P(GPa)=38.4–0.0082T(K) and P(GPa)=27.4−0.0032T(K), respectively, for MgGeO3 and ZnGeO3. Enthalpies of SrGeO3 polymorphs were measured by high-temperature calorimetry. The enthalpies of SrGeO3 pseudowollasonite–walstromite and walstromite–perovskite transitions at 298 K were determined to be 6.0±8.6 and 48.9±5.8 kJ/mol, respectively. The calculated transition boundaries of SrGeO3, using the measured enthalpy data, were consistent with the boundaries determined by previous high-pressure experiments. Enthalpy of formation (ΔH f°) of SrGeO3 perovskite from the constituent oxides at 298 K was determined to be −73.6±5.6 kJ/mol by calorimetric measurements. Thermodynamic analysis of the ilmenite–perovskite transition boundaries in MgGeO3 and ZnGeO3 and the boundary of formation of SrSiO3 perovskite provided transition enthalpies that were used to estimate enthalpies of formation of the perovskites. The ΔH f° of MgGeO3, ZnGeO3 and SrSiO3 perovskites from constituent oxides were 10.2±4.5, 33.8±7.2 and −3.0±2.2 kJ/mol, respectively. The present data on enthalpies of formation of the above high-pressure perovskites were combined with published data for A2+B4+O3 perovskites stable at both atmospheric and high pressures to explore the relationship between ΔH f° and ionic radii of eightfold coordinated A2+ (R A) and sixfold coordinated B4+ (R B) cations. The results show that enthalpy of formation of A2+B4+O3 perovskite increases with decreasing R A and R B. The relationship between the enthalpy of formation and tolerance factor ( R o: O2− radius) is not straightforward; however, a linear relationship was found between the enthalpy of formation and the sum of squares of deviations of A2+ and B4+ radii from ideal sizes in the perovskite structure. A diagram showing enthalpy of formation of perovskite as a function of A2+ and B4+ radii indicates a systematic change with equienthalpy curves. These relationships of ΔH f° with R A and R B can be used to estimate enthalpies of formation of perovskites, which have not yet been synthesized.  相似文献   

3.
4.
(Ca x ,Sr1?x )ZrO3 and Ca(Sn y ,Zr1-y )O3 solid solutions were synthesized by solid-state reaction at high temperature before to be studied by powder X-ray diffraction and Raman Spectroscopy. Diffraction data allow the distortion of the ABO3 perovskite structure to be investigated according to cations substitution on A and B-sites. It is shown that distortion, characterized by Φ, the tilt angle of BO6 octahedra, slightly increases with decreasing y content in Ca(Sn y ,Zr1?y )O3 compounds and strongly decreases with decreasing x content in (Ca x ,Sr1?x )ZrO3 compounds. Such results are discussed in view of the relative A and B cation sizes. Raman data show that vibrational spectra are strongly affected by the cation substitution on A-site; the frequencies of most vibrational modes increase with increasing x content in (Ca x ,Sr1?x )ZrO3 compounds, i.e. with the decreasing mean size of the A-cation; the upper shift is observed for the 358 cm?1 mode (?ν/?r = ?60.1 cm?1/Å). On the other hand, the cation substitution on B-sites, slightly affect the spectra; it is shown that in most cases, the frequency of vibrational modes increases with increasing y content in Ca(Sn y ,Zr1?y )O3 compounds, i.e. with the decreasing mean size of the B-cation, but that two modes (287 and 358 cm?1) behave differently: their frequencies decrease with the decreasing mean size of the B-cation, with a shift respectively equal to +314 and +162 cm?1/Å. Such results could be used to predict the location of different elements such as trivalent cations or radwaste elements on A- or B-site, in the perovskite structure.  相似文献   

5.
Crystal structure data are presented for seven synthetic samples of disordered zirconium-titanate solid solution (Zr,Ti)O2, ranging in composition from x Ti=0.43 to 0.67, thus covering compounds such as ZrTiO4, Zr5Ti7O24, and ZrTi2O6 (srilankite). The compounds, synthesized at high temperatures and various pressures in their respective stability fields, are well crystallized and of homogeneous composition. The resulting structure data are less scattered compared to previous studies that were based on compounds synthesized metastably at low temperatures and room pressure. The compounds have the structure of scrutinyite (α-PbO2) with space group Pbcn, Z=4, unit cell parameters a=4.8495(3) Å, b=5.4635(3) Å, c=5.0462(3) Å at x Ti=0.425 to a=4.7112(2) Å, b=5.4944(1) Å, c=4.9962(1) Å at x Ti=0.666. The first structure refinement of pure, synthetic srilankite is presented, which is in good agreement with that of the natural counterpart. Structural trends observed in disordered zirconium-titanate solid solution along the binary join ZrO2–TiO2 are relatively smooth and continuous, except for rapid lengthening of an unshared octahedral edge which is anomalously short in scrutinyite-structure TiO2. The shortness of this edge may explain the observed instability of this structure with the relatively small Ti as the dominant cation. With increasing Zr content, the average cation position moves off-centre inside the octahedron, away from two shared edges, which permits the 12 closest cation–cation distances in the structure to become more equal. The shortening of the b dimension with increasing amount of the larger cation Zr decreases the distance between octahedral Zr and two additional oxygens in an adjacent chain of edge-sharing octahedra, implying that the Zr environment is evolving towards eightfold coordination. If the two additional oxygens are considered as part of the Zr coordination polyhedron, the bonding topology of tetragonal zirconia is obtained. The compositional evolution of the cell parameters, Zr atomic coordinates and Zr coordination environment is consistent with the idea that the structure is evolving towards that of tetragonal ZrO2. Group-theoretical relationships between scrutinyite, tetragonal zirconia, baddeleyite and fluorite structures show that the sequence of structures fluorite > tetragonal zirconia > scrutinyite > baddeleyite are all related by potentially diffusionless phase transitions driven by wavelike displacements of the oxygen substructure. The scrutinyite and tetragonal structures can act outside their stability fields as “transition states” between the structures on either side.  相似文献   

6.
The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: ${\it{R}} \overline{\text{3}} $ c, a?=?15.9615(6) ?, c?=?27.8568(9) ?] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298?K) and neutron (at 2.3?K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600?cm?1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545?cm?1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.  相似文献   

7.
Neutron powder diffraction data of phase A (Mg7Si2O8(OH)6) were collected at ambient pressure and 3.2?GPa (calculated from the compressibility of phase A) from the deuterated compound, and the structure was refined using the Rietveld method. The derived crystal structure implies that hydrogen atoms occupy two distinct sites in phase A, both forming hydrogen bonds of different lengths with the same oxygen atom. This picture is supported by IR spectra, which exhibit two absorption bands at 3400 and 3513?cm?1 corresponding to OH stretching vibrations, and proton NMR spectra, which display two peaks with equal intensities and isotropic chemical shifts of 3.7 and 5?ppm. The D-D distance [D(1)-D(2) distance] at ambient pressure was found to be 2.09?±?0.02?Å from the neutron diffraction data and 2.09?±?0.05?Å from the NMR spectra. At 3.2?GPa, there is no statistically significant increase in the O-D interatomic distance while the hydrogen bonding interaction D···O appears to increase for one of the hydrogen sites, D(1), which has the stronger hydrogen bonding interaction compared with the other hydrogen, D(2), at ambient pressure. The O-D bond valences, determined indirectly from the D···O distances were 0.86 and 0.91 at ambient pressure, and 0.83 and 0.90?at 3.2?GPa, for D(1) and D(2), respectively.  相似文献   

8.
9.
This paper presents a solid state 1H, 23Na, 29Si, and 119Sn nuclear magnetic resonance (NMR) study of sorensenite. New 29Si NMR data for two related pyroxenoids, wollastonite and pectolite, are included for comparison. By more sensitively probing chemical bonding, the element-specific NMR observations both complement and reinforce the x-ray diffraction results. The role of hydrogen and its interactions with neighboring atoms in sorensenite is further clarified. The wollastonite and pectolite 29Si spectra resolve for the first time all three crystallographic sites and their comparison with sorensenite reveals subtle, systematic differences in sites along the pyroxenoid chains. Effects of corner-shared BeO4 tetrahedra on 29Si shifts show that sorensenite may also be viewed as a more polymerized silicoberyllate. Contribution to the mineralogy of Ilimaussaq No. 86  相似文献   

10.
11.
NMR shieldings (σ) and electric field gradients (eq) are calculated using ab initio methods at the O and T nuclei (where T=P, Si) in two different types of molecules-TH3 dimers, i.e. H3SiOSiH3 and H3POPH 3 2+ , and TO4 trimeric rings, i.e., Si3O 9 6- and P3O 9 3- , which serve as models for assessing the effects of polymerization, bond length and bond angle variation on the NMR properties of polymerized silicates and phosphates. In agreement with earlier ab initio studies on H3SiOSiH3 we confirm that σ(29Si), σ(31P), σ(17O) and eq(17O) all decrease as θ(SiOSi) decreases in the range from 180° to 100°. However, correction for artifacts due to distant core electrons leads to a considerably reduced value for the anisotropy in σ O, bringing it into better agreement with estimated experimental values. The qualitative change in σ(29Si) with θ(SiOSi) can be understood on the basis of changes in the energies of the highest energy occupied MO's and consequent variations in their contributions to the paramagnetic part of the shielding. For H3POPH 3 2+ we calculate a larger value of eqO than for the analog Si compound but the same type of variation of σ(17O) with θ(TOT). The change in σ(31P) with θ(POP) is, however, calculated to be much smaller than in the Si case and a maximum is predicted for intermediate angles. For the trimeric rings we obtain energy optimized geometries in good agreement with x-ray structural data, with T-O terminal distances systematically shorter than the T-O bridging distances. Calculated σ(T) anisotropies are also in good agreement with experiment and can be simply related to the calculated structure. After correction for distant core effects we obtain a change in σ(31P) between PO 4 3- and P3O 9 3- in reasonable agreement with experiment.  相似文献   

12.
13.
An equation of state for Mg(OH)2 brucite under high-pressure and high-temperature conditions has been obtained by measuring temperature dependence of volume up to 600 K at ambient pressure and pressure dependence of volume up to 16 GPa at 300, 473, 673, and 873 K with in situ X-ray diffraction. Pressure dependence of entropy of brucite has been calculated with thermal expansion coefficient and volume which are derived from the present EoS. This dependence indicates that generation of secondary OH dipoles affects entropy. The OH dipoles probably appear around 2 GPa and the number seems not to change over 8 GPa at 300 K.  相似文献   

14.
15.
The Si, Al LII, III and OKα emission and quantum yield spectra were obtained for 24 silicates. It was found that in minerals of a homogeneous anion composition the Si LII, III line has double-humped structure, and when in addition to SiO 4 4? ions of other composition (BeO 4 6? , AlO 4 5? etc.) are present it has triple-humped structure. The process of crystal-glass transition was studied by X-ray spectroscopy. The result is that in spite of the original form of the Si LII, III line of the mineral this line changes its structure in glass and exhibits a typical double-humped structure. The CNDO/2 approach was used to calculate the electronic structure of basic structural groups of silicates from SiO 4 4? to Si5O 16 12? by replacing one or two of the Si atoms by Be, B, Al and P. A qualitative interpretation of the X-ray spectra is presented.  相似文献   

16.
Cu-bearing pyroxene, Mg(Cu.56,Mg.44)Si2O6, has been synthesized by a flux method and crystal structure refinement has been performed by single crystal X-ray diffraction. It is found that the crystal structure is orthorhombic (space group Pbca) with unit cell dimensions of a=18.221(4), b=8.890(1), c=5.2260(7)Å and the cell volume of 846.5( )3Å3. In the M2-site one of the M-O bonds(M-O3B) is extremely expanded from 2.444(2) in enstatite to 2.732(2), thus the coordination polyhedron around M2-site is regarded as square pyramidal rather than square planar or octahedral. It is also found that the M1-site in the pyroxene structure is occupied almost exclusively by Mg, while the M2-site is almost evenly occupied by Mg and Cu. The observed extreme site preference shown by Cu2+ is unusual among the divalent cations with similar ionic sizes.  相似文献   

17.
Oxyphlogopite is a new mica-group mineral with the idealized formula K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2. The holotype material came from a basalt quarry at Mount Rothenberg near Mendig at the Eifel volcanic complex in Rhineland-Palatinate, Germany. The mineral occurs as crystals up to 4 × 4 × 0.2 mm in size encrusting cavity walls in alkali basalt. The associated minerals are nepheline, plagioclase, sanidine, augite, diopside, and magnetite. Its color is dark brown, its streak is brown, and its luster is vitreous. D meas = 3.06(1) g/cm3 (flotation in heavy liquids), and D calc = 3.086 g/cm3. The IR spectrun does not contain bands of OH groups. Oxyphlogopite is biaxial (negative); α = 1.625(3), β = 1.668(1), and γ = 1.669(1); and 2V meas = 16(2)° and 2V calc = 17°. The dispersion is strong; r < ν. The pleochroism is medium; X > Y > Z (brown to dark brown). The chemical composition is as follows (electron microprobe, mean of 5 point analyses, wt %; the ranges are given in parentheses; the H2O was determined using the Alimarin method; the Fe2+/Fe3+ was determined with X-ray emission spectroscopy): Na2O 0.99 (0.89–1.12), K2O 7.52 (7.44–7.58), MgO 14.65 (14.48–14.80), CaO 0.27 ((0.17–0.51), FeO 4.73, Fe2O3 7.25 (the range of the total iron in the form of FeO is 11.09–11.38), Al2O3 14.32 (14.06–14.64), Cr2O3 0.60 (0.45–0.69), SiO2 34.41 (34.03–34.66), TiO2 12.93 (12.69–13.13), F 3.06 (2.59–3.44), H2O 0.14; O=F2 −1.29; 99/58 in total. The empirical formula is (K0.72Na0.14Ca0.02)(Mg1.64Ti0.73Fe0.302+ Fe0.273+Cr0.04)Σ2.98(Si2.59Al1.27Fe0.143+ O10) O1.20F0.73(OH)0.07. The crystal structure was refined on a single crystal. Oxyphlogopite is monoclinic with space group C2/m; the unit-cell parameters are as follows: a = 5.3165(1), b = 9.2000(2), c = 10.0602(2) ?, β = 100.354(2)°. The presence of Ti results in the strong distortion of octahedron M(2). The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) [hkl]] are as follows: 9.91(32) [001], 4.53(11) 110], 3.300(100) [003], 3.090(12) [112], 1.895(21) [005], 1.659(12) [−135], 1.527(16) [−206, 060]. The type specimens of oxyphlogopite are deposited at the Fersman Mineralogical Museum in Moscow, Russia; the registration numbers are 3884/2 (holotype) and 3884/1 (cotype).  相似文献   

18.
 The structures of Ca2CoSi2O7, Ca2MgSi2O7, and Ca2(Mg0.55Fe0.45)Si2O7 have been determined in the temperature range between 297 and 773 K with arbitrary intervals. The structures of the incommensurate phase of the three compounds are characterized by the presence of the six-, seven-, and eight-coordinated Ca–O polyhedra and of the bundles along the c-axes consisting of four arrays of the six-coordinated Ca–O polyhedra and an array of T1O4 (T1: Co, Mg, or Mg–Fe) tetrahedra in the structures. The number of bundles in each material decreases at elevated temperatures. The incommensurate phase undergoes a phase transition into the normal phase at 493 K in Ca2CoSi2O7, at 360 K in Ca2MgSi2O7, and at 510 K in Ca2(Mg0.55Fe0.45)Si2O7. The features of the structures of the normal phase are almost the same as those found in the basic structures (the averaged structures of the incommensurate structures), and this fact implies that the characteristics of the structures, such as the six-coordinated Ca–O polyhedra or fragments of the bundles, should be partially preserved at higher temperatures both in the incommensurate structures and also in the structures of the normal phase. Analyses of anisotropic displacement parameters clarified that disorder of the modulation waves is developed in the structures at higher temperatures. The evolution of a disorder in the structures was ascertained by observation of the circular diffuse streaks in the vicinity of the transition temperature between the incommensurate and normal phases. Received: 3 July 2000 / Accepted: 26 October 2000  相似文献   

19.
A compressional study of (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxenes was carried out at high pressures between 10−4 and 10.2 GPa using in situ single-crystal X-ray diffraction, Raman spectroscopy and optical absorption spectroscopy. Compressional discontinuities accompanied by structural changes, in particular, the appearance of two distinct Ti3+–Ti3+ distances within the octahedral chains at 4.37 GPa, provide evidence for the occurrence of a phase transition in NaTi3+Si2O6. Equation-of-state parameters are K 0 = 115.9(7) GPa with K′ = −0.9(3) and K 0 = 102.7(8) GPa with K′ = 4.08(5) for the low- and high-pressure range, respectively. The transition involves a C2/c–P [`1] \overline{1} symmetry change, which can be confirmed by the occurrence of new modes in Raman spectra. Since no significant discontinuity in the evolution of the unit-cell volume with pressure has been observed, the transition appears to be second-order in character. The influence of the coupled substitution Na+Ti3+↔Ca2+Mg2+ on the static compression behavior and the structural stability has been investigated using a sample of the intermediate composition (Na0.54Ca0.46)(Mg0.46Ti0.54)Si2O6. No evidence for a deviation from continuous compression behavior has been found, neither in lattice parameter nor in structural data and the fit of a third-order Birch–Murnaghan equation-of-state to the pressure–volume data yields a bulk modulus of K 0 = 109.1(5) GPa and K′ = 5.02(13). Raman and polarized absorption spectra have been compared to NaTiSi2O6 and reveal major similarities. The main driving force for the phase transition in NaTi3+Si2O6 is the localization of the Ti3+ d-electron and the accompanying distortion, which is suppressed in the (Na,Ca)(Ti3+,Mg)Si2O6-clinopyroxene.  相似文献   

20.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号