首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Close-range photogrammetry is based on the acquisition of imagery to make accurate measurements and, eventually, three-dimensional (3D) photo-realistic models. These models are a photogrammetric product per se. They are usually integrated into virtual reality scenarios where additional data such as sound, text or video can be introduced, leading to multimedia virtual environments. These environments allow users both to navigate and interact on different platforms such as desktop PCs, laptops and small hand-held devices (mobile phones or PDAs). In very recent years, a new technology derived from virtual reality has emerged: Augmented Reality (AR), which is based on mixing real and virtual environments to boost human interactions and real-life navigations. The synergy of AR and photogrammetry opens up new possibilities in the field of 3D data visualization, navigation and interaction far beyond the traditional static navigation and interaction in front of a computer screen.In this paper we introduce a low-cost outdoor mobile AR application to integrate buildings of different urban spaces. High-accuracy 3D photo-models derived from close-range photogrammetry are integrated in real (physical) urban worlds. The augmented environment that is presented herein requires for visualization a see-through video head mounted display (HMD), whereas user’s movement navigation is achieved in the real world with the help of an inertial navigation sensor. After introducing the basics of AR technology, the paper will deal with real-time orientation and tracking in combined physical and virtual city environments, merging close-range photogrammetry and AR. There are, however, some software and complex issues, which are discussed in the paper.  相似文献   

2.
POS系统是移动测量系统的重要组成部分。由于系统集成影响,POS系统中心的运动状态无法直接观测。因此,可采取设置相关测量合作目标的方法,在确定其与POS系统中心的位置基础上,通过观测合作目标来确定POS系统中心的运动状态。从车载移动测量系统空间基准统一方程出发,提出了一种解算测量合作目标安置参数的方法,并以此为基础,系统分析POS系统定位定姿误差、全站仪测距测角误差、尺度因子误差等误差源对安置参数解算的影响,推导了安置参数解算的误差模型。实验结果表明,采用本文解算方法,可以获取毫米级的合作目标安置参数,满足合作目标应用于动态测量检测POS系统定位精度的需求。  相似文献   

3.
Wind tunnel engineers require measurements of position and orientation of aerospace models under test conditions. The measurement technique must be non-contact, non-intrusive and have a high sample rate. Videometric techniques based on multiple, synchronized CCD cameras can supply position and orientation data at 30Hz or 60Hz with acceptable accuracies. This paper describes a data acquisition system designed and implemented at NASA Langley Research Center to capture the position and orientation of free-flight aerospace models. System calibration and data processing techniques are discussed. Two examples of model tests will be described and examples of data output will be presented.  相似文献   

4.
本文分析了AR技术的发展需求,提出适合于AR智能导航的姿态、位置综合测量系统.该系统由双频GPS接收机、陀螺仪和车辆里程计组合,采用卡尔曼滤波方法实现位置姿态测量.文章估计了滤波器实时为动态AR智能导航系统输出的位置姿态信息的精度.并通过实验验证了系统的可靠性、适用性和稳定性.  相似文献   

5.
观测信息随机模型在参数估计、质量控制和精度评定过程中具有重要作用,准确的观测信息随机模型是北斗精密定位的基础。首先,利用简化的Helmert方差分量估计方法估计北斗三号卫星观测信息精度,并拟合模型系数;然后,利用全局检验和ω检验对基于分段函数、正弦函数、余弦函数和指数函数的随机模型进行统计检验,分析随机模型统计特性;最后,利用精密单点定位(precise point positioning,PPP)检验各随机模型对定位性能的影响。实验结果表明,北斗三号卫星的伪距和载波相位观测值精度均与高度角相关,且观测类型不同,相关程度不同;基于指数函数的随机模型在拟合误差、全局检验和ω检验中均表现出最优的性能,全局检验浮点解和固定解的误警率仅为5.1%和4.9%,ω检验伪距和载波相位最大误警率分别为5.8%和6.8%,PPP收敛时间最短,定位精度最高。基于指数函数的随机模型能够准确描述北斗观测信息精度,提高北斗三号卫星精密定位结果的精度和可靠性。  相似文献   

6.
机载POS系统用于航空遥感直接对地目标定位的精度分析   总被引:11,自引:0,他引:11  
利用实际航摄资料评价了WGS84和国家80坐标系下机载POS(position and orientation system)系统直接对地目标定位的精度,分析了不同大地水准面拟合方法对高程精度的影响,检校了POS系统的视准轴误差,讨论了检校场的检校结果。试验表明,基于POS系统的航空遥感直接对地目标定位至少需要利用带有1个平高地面控制点的检校场对POS系统进行检校才能消除系统误差;在WGS84坐标系中,可以获得较高的定位精度,而转换到国家80坐标系下,必须对高程进行大地水准面拟合改正。  相似文献   

7.
CityGML, a semantic information model for digital/virtual city models has become quite popular in various scenarios. While the data format is still actively under development, it is already supported by different software solutions, especially GIS-based desktop applications. Mobile systems on the other hand are still neglected, even though the georeferenced objects of CityGML have many application fields, for example, in the currently popular area of location-based Augmented Reality. In this paper we present an independent multi-platform CityGML viewer, its architecture and specific implementation techniques that we use to realize and optimize the process of visualizing CityGML data for use in Augmented Reality. The main focus lies in improving the implementation on mobile devices, such as smartphones, and assessing its usability and performance in comparison to web-based approaches. Due to the constrained hardware resources of smartphones, it is a particular challenge to handle complex 3D objects and large virtual worlds as provided by CityGML, not only in terms of memory and storage space, but also with respect to mobile processing units and display sizes.  相似文献   

8.
An image sequence-based, fully automatic and rather flexible procedure for the calibration of stationary multi-camera systems for 3-D observation of dynamic events is presented and analysed. While conventional close-range camera calibration techniques are either based on a stable point-field with known reference coordinates or on a temporarily stationary point-field with only approximately known 3-D coordinates, which is imaged from different locations and under different orientations with one single camera, the presented technique is based on stationary cameras and moving targets, making use of the image sequence acquisition nature of most solid state cameras. In the simplest version, only one easily detectable marker has to be tracked through image sequences of multiple pre-calibrated cameras, thus avoiding the necessity of homologous feature identification for the establishment of multi-view correspondences; 3-D coordinates of the marker position are not required. This single-marker method does not allow for the determination of the interior orientation. In an extended version allowing for full camera orientation and calibration, a reference bar of known length is moved through object space, with the problem of feature identification and establishment of multi-view correspondences being reduced to the tracking of two targets. The method can only be used with multi-camera systems and is most useful for 3-D motion analysis applications, but may be adapted to a wide range of other applications. The advantages of the method over conventional self-calibration techniques are the trivial establishment of multi-view correspondences, the fact that no temporarily stable target field has to be constructed, and the fact that each camera has to be set up only once. After an explanation of the technique, its performance is examined in detail based on extensive computer simulations, and the practical effectiveness is shown in a pilot study on industrial robot calibration. Based on these studies, recommendations are given concerning the number of reference bar locations, preferable reference bar orientation schemes and the achievable accuracy potential.  相似文献   

9.
微小卫星由于平台体积、重量、能源等限制,其上搭载的姿态、位置测量设备精度不高,导致其直接对地定位误差较大。通过对某微小卫星嵩山地区的多景面阵影像进行姿态角常差检校,发现姿态角系统误差随时间线性变化的规律。为了提高定位精度,本文提出一种针对面阵的顾及姿态线性误差的偏置矩阵和二维探元指向角几何检校模型。相对于传统的姿态角常差检校模型,本文方法考虑了姿态角系统误差随时间线性变化的规律。试验结果表明,经过内外方位元素检校后,卫星的定位精度从数十千米提升到十米以内,相对于传统的常差模型,本文提出的检校模型有效地消除了姿态随时间线性变化的系统误差。  相似文献   

10.
Taejung  Kim  Ian  Dowman 《The Photogrammetric Record》2006,21(114):110-123
The main objective of this paper is to compare two types of physical sensor models of linear pushbroom satellite images: one that uses position and rotation angles as model parameters and one that uses orbit and attitude angles as model parameters. Comparison is carried out by two accuracy measures: the accuracy of bundle adjustments and the accuracy of estimating exterior orientation parameters. The first measure has been used widely to indicate the mapping accuracy of sensor models. It is argued that the second measure is also important for certain applications. The two types were implemented with different sets of unknown parameters and tested with two KOMPSAT-1 Earth Observing Camera (EOC) scenes and GPS-derived control points. In terms of the first measure the two models produced similar results whereas in terms of the second measure the one based on orbit and attitude outperformed the other. It seems better to use this model if one wishes to retrieve satellite orbit or attitude through bundle adjustments.  相似文献   

11.
POS数据用于立体模型恢复时的上下视差分析   总被引:1,自引:0,他引:1  
从连续法相对定向原理出发,推导了直接由像片外方位元素恢复立体模型时模型点上下视差的计算公式,用模拟数据验证了计算方法的正确性,并对两组不同摄影比例尺的实际航摄像片进行了试验。通过比较利用GPS辅助光束法区域网平差获得的像片外方位元素和POS提供的像片外方位元素重建立体模型所产生的模型上下视差,分析了POS系统误差对模型上下视差的影响。结果表明,直接利用POS提供的像片外方位元素进行安置元素测图会出现作业员难以忍受的模型上下视差,不能满足地形测图的规范要求。  相似文献   

12.
This paper describes a new method for integrated range camera system self-calibration in which both traditional camera calibration parameters and rangefinder systematic error parameters are estimated simultaneously in a free-network bundle adjustment of observations to signalised targets. Its mathematical basis is collinearity and range observation equations augmented with correction models for systematic error sources identified in the data. The self-calibration results from datasets captured with two different range cameras, a SwissRanger SR3000 and a SwissRanger SR4000, are presented and analysed in detail. The method’s effectiveness is demonstrated in terms of systematic error removal and independent accuracy assessment. Up to a 54% reduction in the residual RMS was achieved by inclusion of the proposed error models in the self-calibration adjustment. An improvement of at least 74% in the RMS of object point co-ordinate differences, over that achieved without calibration or provided by the manufacturer’s software (in the case of the SR3000), was realised in an independent accuracy assessment. In addition, the effects of several influencing variables, including the range stochastic error model, the network geometry and the range measurements themselves, on key correlation mechanisms are analysed in detail.  相似文献   

13.
When people explore new environments they often use landmarks as reference points to help navigate and orientate themselves. This research paper examines how spatial datasets can be used to build a system for use in an urban environment which functions as a city guide, announcing Features of Interest (FoI) as they become visible to the user (not just proximal), as the user moves freely around the city. Visibility calculations for the FoIs were pre‐calculated based on a digital surface model derived from LIDAR (Light Detection and Ranging) data. The results were stored in a text‐based relational database management system (RDBMS) for rapid retrieval. All interaction between the user and the system was via a speech‐based interface, allowing the user to record and request further information on any of the announced FoI. A prototype system, called Edinburgh Augmented Reality System (EARS), was designed, implemented and field tested in order to assess the effectiveness of these ideas. The application proved to be an innovative, ‘non‐invasive’ approach to augmenting the user's reality.  相似文献   

14.
本文针对LiDAR点云和POS数据辅助航空影像的连接点自动匹配,设计了用于相关系数匹配的最佳匹配点位快速搜索算法;提出一种基于虚拟地面控制点的相机安置角误差自动检校方法,在此基础上自适应确定影像匹配搜索范围。试验结果表明,本文提出的最佳匹配点位快速搜索算法可在保证匹配正确性的情况下节省约25%的匹配耗时;相机安置角误差补偿方法能够有效地提高由POS数据计算的影像外方位元素的精度,从而明显改善同名点匹配时的点位预测精度;本文算法能处理多分辨率、多视角的交叉飞行航空影像,获得高精度的匹配结果。  相似文献   

15.
针对车载移动测量系统中激光扫描仪和载体坐标系之间存在的位置和姿态偏差,在结合常规特征点、特征面检校方法基础上,本文提出了一种带有误差改正数的位置和姿态检校方法。利用TLS获取的车载系统整体点云模型和传感器固有几何属性,获取传感器之间相对关系初值,在此基础上引入误差改正数,构建误差改正模型。在与IGS站联测的检校场中借助平面、球形标靶和平面反射标志等特征,采用最小二乘法迭代法计算误差改正数最优解,从而实现传感器快速检校。试验结果表明,该方法切实可行,检校后点云平面绝对精度和高程绝对精度分别为0.043、0.072 m,相对精度为0.018 m,满足移动测量系统数据获取的精度要求,对促进车载移动测量技术发展和应用具有重要意义。  相似文献   

16.
Ionospheric scintillations are caused by time- varying electron density irregularities in the ionosphere, occurring more often at equatorial and high latitudes. This paper focuses exclusively on experiments undertaken in Europe, at geographic latitudes between ~50°N and ~80°N, where a network of GPS receivers capable of monitoring Total Electron Content and ionospheric scintillation parameters was deployed. The widely used ionospheric scintillation indices S4 and sj{\sigma_{\varphi}} represent a practical measure of the intensity of amplitude and phase scintillation affecting GNSS receivers. However, they do not provide sufficient information regarding the actual tracking errors that degrade GNSS receiver performance. Suitable receiver tracking models, sensitive to ionospheric scintillation, allow the computation of the variance of the output error of the receiver PLL (Phase Locked Loop) and DLL (Delay Locked Loop), which expresses the quality of the range measurements used by the receiver to calculate user position. The ability of such models of incorporating phase and amplitude scintillation effects into the variance of these tracking errors underpins our proposed method of applying relative weights to measurements from different satellites. That gives the least squares stochastic model used for position computation a more realistic representation, vis-a-vis the otherwise ‘equal weights’ model. For pseudorange processing, relative weights were com- puted, so that a ‘scintillation-mitigated’ solution could be performed and compared to the (non-mitigated) ‘equal weights’ solution. An improvement between 17 and 38% in height accuracy was achieved when an epoch by epoch differential solution was computed over baselines ranging from 1 to 750 km. The method was then compared with alternative approaches that can be used to improve the least squares stochastic model such as weighting according to satellite elevation angle and by the inverse of the square of the standard deviation of the code/carrier divergence (sigma CCDiv). The influence of multipath effects on the proposed mitigation approach is also discussed. With the use of high rate scintillation data in addition to the scintillation indices a carrier phase based mitigated solution was also implemented and compared with the conventional solution. During a period of occurrence of high phase scintillation it was observed that problems related to ambiguity resolution can be reduced by the use of the proposed mitigated solution.  相似文献   

17.
吴勇  郭晓旻 《测绘通报》2021,(1):112-115
为快速跟踪及定位远距离的运动车辆,本文设计了利用单目相机与激光望远测距仪的定位系统。此定位系统装备单目相机、望远测距仪与角度传感器,采用LK光流算法实时跟踪既定目标,构建了相机、测距仪、目标的坐标方程式模型,可实时解算100~300 m外运动目标的位置。该定位系统无需在被测运动车辆上安装任何设施,即可对合作或非合作目标实现跟踪定位。本文以汽车作为运动目标,使用高精度的CORS系统进行精度验证,该系统实时跟踪定位的精度可保持在亚米级。  相似文献   

18.
付建红 《测绘学报》2014,43(7):698-704
利用航摄像片存在的相对几何位置关系,将机载IMU视准轴误差引入立体像对相对定向模型中,提出了一种基于相对定向的机载IMU视准轴误差求解新方法。详细推导了基于单个立体模型和连续立体模型求解IMU视准轴误差的数学模型,并用三组带有IMU设备获取的实际航空影像数据进行了试验验证。结果表明,所推导的机载IMU视准轴误差求解方法是正确、可行的,利用三张以上相邻像片构成的连续立体模型即可求解出IMU的视准轴误差,避免了野外布设检校场和其他地面控制条件带来的诸多问题,有利于带机载IMU的航空遥感快速对地目标定位。  相似文献   

19.
差分码偏差(DCB)作为电离层建模和导航定位中一项重要的误差源,对其进行估计求解至关重要.为提高北斗卫星导航系统(BDS) DCB估计和电离层建模精度,提出了一种综合高度角、卫地距和测站纬度多因素的随机模型,并对比分析了不同随机模型对BDS DCB估计和电离层垂直总电子含量(VTEC)建模精度的影响.结果表明:不同随机模型对卫星端DCB解算产生约0.2 ns差异.相较于高度角随机模型,采用高度角、卫地距组合模型测站DCB估计精度平均提高0.13 ns,电离层建模精度提高了约0.2 TECU.新提出的随机模型,在低纬度测站DCB解算精度上差于高度角模型和高度角、卫地距组合模型,但在高纬度测站DCB解算结果上更优,且对电离层VTEC建模精度提升效果明显,与前两种随机模型相比分别提升了0.88 TECU和0.68TECU.  相似文献   

20.
本文是机器视觉参量下的三维数字摄影测量智能构像基础工作之一:成像系统位置姿态自动跟踪与精密修正,属于摄影测量与机器视觉、数字图像处理等学科交叉的摄像测量领域。针对基于目标3D模型的位姿跟踪问题开展研究,对相关研究的现状进行梳理,并提出系列位姿跟踪与模型修正方法。在完全已知目标3D精确模型的情况下,对于包含丰富直线特征的特殊目标,提出基于直线模型的目标位姿跟踪方法,实现了目标位姿参数的精确跟踪;为处理更为一般目标,利用目标的3D边缘模型,提出法向距离迭代加权最小二乘位姿估计方法及距离图迭代最小二乘位姿跟踪方法。当目标3D直线模型参数不准确时,结合光束法平差思想,提出一种针对序列图像的基于3D直线模型同时位姿跟踪与模型修正方法,联合优化求解目标位姿参数及3D直线模型参数,在模拟空间卫星目标位姿测量的仿真试验中,模型直线朝向、位置误差及目标位姿平均角度、平均位置误差分别为0.3°、3.5 mm及0.12°、20.1 mm。针对包含丰富直线特征的目标,在其3D直线模型完全未知的情况下,提出基于序列图像直线对应的目标结构重建与位姿跟踪方法,利用序列图像信息,在SFM框架下同时优化求解目标直线模型参数及位姿参数,仿真试验条件下,重建模型直线朝向、位置误差及位姿参数平均角度、平均位置误差分别约为0.4°、7.5 mm及0.16°、23.5 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号