首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
High-resolution shallow seismic reflection profiles across the northwesternmost part of the New Madrid seismic zone (NMSZ) and northwestern margin of the Reelfoot rift, near the confluence of the Ohio and Mississippi Rivers in the northern Mississippi embayment, reveal intense structural deformation that apparently took place during the late Paleozoic and/or Mesozoic up to near the end of the Cretaceous Period. The seismic profiles were sited on both sides of the northeast-trending Olmsted fault, defined by varying elevations of the top of Mississippian (locally base of Cretaceous) bedrock. The trend of this fault is close to and parallel with an unusually straight segment of the Ohio River and is approximately on trend with the westernmost of two groups of northeast-aligned epicenters (“prongs”) in the NMSZ. Initially suspected on the basis of pre-existing borehole data, the deformation along the fault has been confirmed by four seismic reflection profiles, combined with some new information from drilling. The new data reveal (1) many high-angle normal and reverse faults expressed as narrow grabens and anticlines (suggesting both extensional and compressional regimes) that involved the largest displacements during the late Cretaceous (McNairy); (2) a different style of deformation involving probably more horizontal displacements (i.e., thrusting) that occurred at the end of this phase near the end of McNairy deposition, with some fault offsets of Paleocene and younger units; (3) zones of steeply dipping faults that bound chaotic blocks similar to that observed previously from the nearby Commerce geophysical lineament (CGL); and (4) complex internal deformation stratigraphically restricted to the McNairy, suggestive of major sediment liquefaction or landsliding. Our results thus confirm the prevalence of complex Cretaceous deformations continuing up into Tertiary strata near the northern terminus of the NMSZ.  相似文献   

2.
Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns.  相似文献   

3.
During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone.

The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which uncomfortably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75–100 ms of two-way travel time (about 60–100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified.

Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30°–35°E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50°E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment.

The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are favorably oriented in the modern stress field to be reactivated as right-lateral strike slip faults. Currently, earthquake hazards assessments are most dependent upon historical seismicity, and there are little geological data available to evaluate the earthquake potential of fault zones outside of the NMSZ. We anticipate that future studies will provide evidence that seismicity has migrated between fault zones well beyond the middle Mississippi Valley. The potential earthquake hazards represented by faults outside the NMSZ may be significant.  相似文献   


4.
High-resolution seismic surveys, including P- and S-wave studies, have been conducted in an area of the Ottawa River valley located 80 km east of Ottawa (Canada). Based on dating of paleolandslides, the existence of paleoearthquake activity has been postulated in this area. The target zone for the seismic survey is characterized by surface disturbance and sediment deformation. P-wave seismic imaging was used to map the overburden–bedrock interface as well as to indicate reflecting boundaries within the overburden. The area of surface disturbance was found to overlie a buried bedrock basin, 8 km in diameter, infilled with a maximum thickness of 180 m of unconsolidated Quaternary sediments. Preliminary results of core logging show the presence of sand overlain by deformed fine sediments within the disturbed area. Shear-refraction studies reveal differences in the velocity–depth profiles between the disturbed area and the surrounding undisturbed areas. The shear-wave reflection method was used to produce a fundamental resonant period map for the area. Surface sediment disturbance was probably due to a combination of ground-motion amplification due to the basin (thick soft sediments) and the presence of water-saturated sand at depth.  相似文献   

5.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   

6.
High-resolution seismic reflection profiles from Limón Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatún Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities.  相似文献   

7.
Conventional wave-equation-based migration of deep seismic reflection data can produce severe artifacts, which appear as broad circular arcs or “smiles”, due to the existence of apparent truncations of reflections on the stack section arising from poor signal penetration, changes in orientation of the acquisition profile, and the existence of strong overlying lateral velocity variations. These artifacts limit the interpretation of deep seismic profiles, because they obscure weak reflections and reflection truncations that may, e.g., indicate the presence of subsurface faults. Here I present a new migration algorithm, in which each sample of the stack is migrated to a short linear segment whose position and dip are determined by its original position on the stack, an estimate of the local apparent dip at that point, and a user-specified migration velocity. No subjective interpretation of reflections on the stack section is required, and the algorithm produces no arc-like migration artifacts. The degree of lateral smearing can be easily controlled, allowing reflection truncations to be revealed. In practice, the algorithm is most effectively applied to data that have been coherency-filtered to remove low amplitude noise, which would otherwise be preserved.  相似文献   

8.
Seismics method were used to evaluate shallow geological conditions at 33 sites in the vicinity of Paducah, Kentucky. A combined set of P- and S-wave seismic refraction and reflection soundings were used, in addition to local borehole information, to produce structure maps of (1) a shallow (< 30 m deep) horizon believed to represent an unconformity surface at the top of the Eocene, and (2) the Paleozoic bedrock surface (< 85 to > 160 m deep). Shear-wave velocity contrasts across the shallow unconformity were generally 2-to-1 while the contrast at the top of the Paleozoic bedrock exceeds 5-to-1. These seismic boundaries have been determined to be very important in modelling and interpreting earthquake ground motion amplification in the Paducah area. The quality and accuracy of the data, and the cost effective nature of the methods, suggest that other communities in areas at risk to damage from seismic activity, with foundation conditions comparable to Paducah, might benefit from similar characterization in order (1) to identify seismically hazardous, near-surface, geological conditions, and (2) to develop geological models that could be used in computer simulations of site response.  相似文献   

9.
Interpretation of reprocessed seismic reflection profiles reveals three highly coherent, layered, unconformity-bounded sequences that overlie (or are incorporated within) the Proterozoic “granite–rhyolite province” beneath the Paleozoic Illinois basin and extend down into middle crustal depths. The sequences, which are situated in east–central Illinois and west–central Indiana, are bounded by strong, laterally continuous reflectors that are mappable over distances in excess of 200 km and are expressed as broad “basinal” packages that become areally more restricted with depth. Normal-fault reflector offsets progressively disrupt the sequences with depth along their outer margins. We interpret these sequences as being remnants of a Proterozoic rhyolitic caldera complex and/or rift episode related to the original thermal event that produced the granite–rhyolite province. The overall thickness and distribution of the sequences mimic closely those of the overlying Mt. Simon (Late Cambrian) clastic sediments and indicate that an episode of localized subsidence was underway before deposition of the post-Cambrian Illinois basin stratigraphic succession, which is centered farther south over the “New Madrid rift system” (i.e., Reelfoot rift and Rough Creek graben). The present configuration of the Illinois basin was therefore shaped by the cumulative effects of subsidence in two separate regions, the Proterozoic caldera complex and/or rift in east–central Illinois and west–central Indiana and the New Madrid rift system to the south. Filtered isostatic gravity and magnetic intensity data preclude a large mafic igneous component to the crust so that any Proterozoic volcanic or rift episode must not have tapped deeply or significantly into the lower crust or upper mantle during the heating event responsible for the granite–rhyolite.  相似文献   

10.
Crustal studies within the Japanese islands have provided important constraints on the physical properties and deformation styles of the island arc crust. The upper crust in the Japanese islands has a significant heterogeneity characterized by large velocity variation (5.5–6.1 km/s) and high seismic attenuation (Qp=100–400 for 5–15 Hz). The lateral velocity change sometimes occurs at major tectonic lines. In many cases of recent refraction/wide-angle reflection profiles, a “middle crust” with a velocity of 6.2–6.5 km/s is found in a depth range of 5–15 km. Most shallow microearthquakes are concentrated in the upper/middle crust. The velocity in the lower crust is estimated to be 6.6–7.0 km/s. The lower crust often involves a highly reflective zone with less seismicity, indicating its ductile rheology. The uppermost mantle is characterized by a low Pn velocity of 7.5–7.9 km/s. Several observations on PmP phase indicate that the Moho is not a sharp boundary with a distinct velocity contrast, but forms a transition zone from the upper mantle to the lower crust. Recent seismic reflection experiments revealed ongoing crustal deformations within the Japanese islands. A clear image of crustal delamination obtained for an arc–arc collision zone in central Hokkaido provides an important key for the evolution process from island arc to more felsic continental crust. In northern Honshu, a major fault system with listric geometry, which was formed by Miocene back arc spreading, was successfully mapped down to 12–15 km.  相似文献   

11.
The downhole vertical accelerometer array VSAP near Paducah, KY, consists of three-component accelerometers at the surface, the top of the McNairy Formation (−41 m), and the top of the Paleozoic bedrock (—99 m). The array is at the northern end of the Mississippi Embayment, and it was installed to verify the ground-motion modeling for the site, assuming a significant earthquake in the New Madrid Seismic Zone. Accelerograms from 4.2 and 2.0 mb earthquakes were used to check aspects of the modeling pertaining to linear behavior of the soil column, and to review the soil column models derived by drilling and geotechnical methods and through the use of high-resolution P- and SH-wave seismic refraction in reflection techniques. Results of the study indicate that for the linear case the soil column models derived by the two techniques are equivalent, and that the most important boundary in the soil column, with respect to amplification of the ground motions, is the interface between the limestone bedrock and soil.  相似文献   

12.
香港地区地震风险评价和设防区划   总被引:3,自引:0,他引:3  
香港地区隶属于中国板内地震区中的东南沿海块缘地震带。港-九块体为晚中生代至早第三纪以来以持续稳定上升为主的块体, 块体活动性明显地低于其周边相对下沉的中新生代盆地。为此, 赋予港-九块体为最大可信震级M=5.5级潜在震源区, 而其周边中新生代断陷盆地则为最大可信震级M6.0潜在震源。从大陆地震构造成因的环境、潜在震源可信震级范围M=5.0~7.5和近源地震动饱和等三个方面的可比性, 结合中国大陆地震震源破裂尺度和地震烈度影响场, 所建立的反映中国地震构造和震源破裂及地震烈度影响场特点的PGA和反应谱地震动衰减预测关系式可用于香港地区。以50%概率时的中值对中国强震记录的对比, 本研究所提供的经验期望预测关系式, 能包络实际的资料。因此, 用此地震动衰减预测模式对香港地区地震危险性进行评估, 将会得到相对保守地震动预测值。通过香港地区基岩地震动危险性分析和计算, 参照中国大陆地震设防标准, 进行了基岩设计参数确定和区划。以年概率P=0.02、P=0.002、P=0.0004三个概率标准, 对应的地震动重复周期大约分别约为50a, 500a, 2500a的基岩PGA和反应谱, 作为香港地区基岩上构筑物和建筑物可选的基  相似文献   

13.
About 400 km of new seismic reflection data has been acquired in the study region offshore of Alaçatı, Doğanbey, and Kuşadası, which enables investigation of the active crustal deformation in this region. The deformation onshore in western Turkey is dominated by crustal extension, and clear evidence of this process is also now available from this offshore area. However, in the onshore area adjacent to this study region evidence of active right-lateral strike-slip faulting has also previously been observed. This strike-slip faulting has previously been thought only to accommodate variations in extension between adjacent normal faults. However, in the offshore area there is considerable evidence of zones of deformation, some of which may link to the strike-slip faulting onshore, suggesting that strike-slip faulting may be of greater importance in this region than previously thought.  相似文献   

14.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

15.
郯庐断裂带早新生代的活动性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郯庐断裂带是新生代以来中国东部大陆大地构造演化中最重要的构造带之一,对郯庐断裂的认识制约了大型盆地的形成演化的认识及油气资源的评价。本文在野外实地调查的基础上,从郯庐断裂带与地层的穿切关系入手,借助最新的地震反射剖面以及第一手野外资料,判定郯庐断裂带在新生代早期经历了强烈的活动,表现为左旋兼具逆冲的性质。通过分析覆盖在郯庐断裂带之上火山岩中的断裂发育样式和地震反射剖面上的地层覆盖关系,认为中新世以来,相当于渤海湾盆地的东营运动之后,构造应力场发生了变化,郯庐断裂带不再有显著的活动,发育了新的断裂体系。郯庐断裂新生代兼有垂向位移的走滑活动奠定了中国东部古近纪盆地形成、沉积演化和油气资源成藏的基本格局。  相似文献   

16.
This paper presents the results of high-resolution reflection seismic surveys carried out between 1989 and 1996 along rivers and canals in northern Belgium. The seismic data penetrate down to 900 m in the sedimentary cover or to the Paleozoic basement. The reflection response of the acoustic basement provides clear indications with regard to the top of the Paleozoic: crystalline basement and Lower Paleozoic metasediments and volcanics of the London-Brabant Massif and NE-dipping Devonian and Carboniferous strata. The subhorizontal Mesozoic and Cenozoic sedimentary cover comprises 20 unconformity-bound seismic units: 5 in the Cretaceous and 15 in the Cenozoic. Based on borehole information, these units are correlated with lithostratigraphically defined formations or groups. Some of the unit-bounding unconformities are of regional importance. They are attributed i) to eustatic sea-level changes causing regional flooding during the Late Cretaceous or incision of deep valleys during the Late Oligocene and Late Miocene, ii) to regional tectonic tilting between Late Eocene and Early Oligocene, or iii) to a combination of eustasy and tectonics causing valley incisions during the Lutetian. Faults of the Roer Valley Graben have offset different stratigraphic levels by sometimes considerable amounts (up to 230 m in the Oligocene to Quaternary succession). Although the main tectonic phase took place during the Miocene, the activity has varied considerably through time, and also from fault to fault. Most faults seem to have a 10 to 30-m displacement since the Late Pliocene.  相似文献   

17.
The SW part of the Baltic Sea between Scania, Rügen, Bornholm and Mön constitutes a complex crustal transition between the Baltic Shield and the accreted Phanerozoic provinces of the West European Platform. An integrated interpretation of marine reflection seismic data sets from the BABEL AC line and two commercial surveys offshore NE Germany and S Sweden have resulted in a complete view of the structural framework in the area. The general seismic picture can best be detected by two characteristic sets of reflection phases. The lower set is dominated by slightly dipping and vertically displaced prominent reflectors corresponding to downfaulted Lower Palaeozoic strata on top of the Precambrian basement. The upper set represents Mesozoic and Cenozoic coherent reflection phases including a thick Upper Cretaceous unit. The Caledonian deformation front is identified in the southern part of the investigated area as the border against which basement rocks have been affected by Caledonian metamorphism and deformation. Major structural elements also include the N–S trending Agricola–Svedala Fault and North Rügen-Skurup Fault. Several NW–SE trending faults are also identified including the Nordadler–Kamien Fault, Jutland–Mön Fault, Carlsberg Fault, Romeleåsen Fault Zone and the Fyledalen Fault Zone. The sedimentary record from NE German offshore wells and Scanian boreholes is compared with the seismic data. The Cambro-Silurian strata are composed mainly of quartzitic sandstones, shales and biomicritic limestones. The Silurian is dominated by grey, micaceous shale and micaceous siltstone deposited in a marginal basin. Upper Palaeozoic strata are merely encountered in the southernmost part of the investigated area. These include Zechstein strata. The Mesozoic deposits are dominated by a thick Cretaceous sequence of mainly limestones with interbedded sandstones.  相似文献   

18.
Passive seismic approaches, using a single-station, enable rapid, cost-effective and non-invasive estimates of the thickness of sedimentary rocks overlying crystalline basement. This approach was applied to estimate the Cenozoic and Cretaceous succession beneath the Nullarbor Plain in southeastern Western Australia. Passive seismic data acquired at the majority of the 94 sites show a single, strong resonance frequency peak between 0.4 and 0.6 Hz suggesting an impedance contrast of a single subsurface layer. Modelling these resonance frequencies against known stratigraphy at 12 drill holes shows that this impedance contrast corresponds to the contact of the base of the Cenozoic–Cretaceous sedimentary succession of the Eucla and Bight basins with the crystalline basement. Data from the remaining sites produced sediment thickness estimates ranging from only tens of metres near the western edge of the Nullarbor Plain to over 860 m near its southern margin. Near this margin, rapid thickening of the sedimentary cover is coincident with an interpreted paleosea-cliff or indicative of localised faulting. Beneath the Western Australian portion of the Nullarbor Plain the sedimentary cover is on average 320 m thick with the succession thinning gradually towards the margins of the basin. A passive seismic approach is thus seen as a useful screening tool for the mineral exploration industry in areas that are under cover allowing for better targeting and cost-reduction in greenfields exploration.  相似文献   

19.
Images of the depth and shape of colluvial wedges by 3-D travel time tomography can be valuable in estimating the past history of ancient earthquakes and assessing the earthquake hazard of a fault. Unfortunately, 3-D seismic surveys can be both costly and time consuming. In this paper, we report our first successful results of detecting the shapes and depths of colluvial wedges with 2-D travel time tomography. The locations of the colluvial wedges are along the Oquirrh fault and the Salt Lake City segment of the Wasatch fault. We also report that the tomogram from one of our 2-D surveys suggests the possibility of detecting multiple colluvial wedges at depth. Using both reflection and tomographic images at another site clearly reveals the presence of a known shallow fault and the contact between native soil and recent fill. Our results suggest the synergistic use of both seismic tomography and reflection imaging, we denote as seismic trenching, as a means of detecting shallow colluvial wedges and faults. Seismic trenching has the potential to significantly expand the lateral extent and depth of investigation of paleoseismology.  相似文献   

20.
Multichannel reflection seismic profiles extending southward from the Grand Banks show gently dipping reflectors within “basement” features underlying the Newfoundland Ridge. These reflections appear to be from sedimentary strata, indicating that the Newfoundland Ridge is a remnant of a former sedimentary basin, rather than a ridge of oceanic crust as prescribed by plate tectonic models. Probably this feature is underlain, and to some extent surrounded by, continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号