首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An empirical computer model was developed to describe granite magma degassing and the partitioning behavior of Cl between melts and aqueous chloride fluids that formed during eutectic isobaric crystallization of magmas at pressures from 4 to 0.4 kbar and a temperature of 800 ± 25°C. This model is the extensions of the earlier model describing the decompression degassing of granite melts (Lukanin, 2015). The numerical modeling was performed for both closed-system conditions, when fluid remains in the system, and open-system conditions, when fluid is removed from the system. The results of numerical modeling revealed the main factors controlling the behavior of Cl during crystallization-induced degassing, such as the initial contents of Cl and H2O of the melts, pressure, and the degree of system openness. At high pressures (>1.6 kbar), isobaric crystallization is accompanied by a decrease in the concentrations of Cl in the melt (CClm) and fluid phase (CClfl). This tendency becomes even more pronounced in an open-system with increasing pressure and initial Cl content. A decrease in pressure in the range of 1.62–0.85 kbar results in a drastic change in the Cl behavior: the trend of CClfl and CClfl decrease dominating during crystallization at high pressures changes to the opposite. At low pressures (<0.85 kbar), the enrichment of the residual melts and released fluids in Cl leads at a certain stage of crystallization to the formation of a heterogeneous fluid consisting of two immiscible aqueous chloride phases, a waterdominated aqueous phase and a chloride-rich liquid (brine).  相似文献   

2.
3.
The paper discusses the formation conditions of the Ary-Bulak ongonite massif (eastern Transbaikalia). Studies of melt and fluid inclusions have shown that, along with crystalline phases and a silicate melt, ongonitic magma contained aqueous–saline fluids of different types, fluoride melts compositionally similar to fluorite, sellaite, cryolite, chiolite, and more complex aluminum fluorides as well as silicate melts with abnormal Cs and As contents. An ongonite melt crystallized with the participation of P–Q fluids as vapor solutions, presumably NaF-containing and slightly admixed with chlorides. We studied the properties and composition of brine inclusions from Ca- and F-rich rocks on the margin of the massif. Depending on the thermophysical properties of the host rocks and ongonite melt, the duration of its crystallization has been estimated for a magma chamber of the size and shape of the Ary-Bulak massif. Magma chamber cooling has been modeled, and the density, viscosity, and Rayleigh number of the ongonite melt have been estimated from the composition of silicate glasses in melt inclusions. These data strongly suggest intense convection in the residual magma chamber lasting for centuries. We have calculated possible fluid overpressure during the crystallization and degassing of the ongonite melt in a closed magma chamber.Calcium- and fluorine-rich aphyric and porphyritic rocks on the southwestern margin of the massif might have formed by the following mechanism. Local decompression in the magma chamber quenched an oxygen-containing calcium fluoride melt accumulated at the crystallization front, and then these rocks altered during the interaction with fluids. When penetrating the marginal zone, a P–Q magmatic fluid which coexisted with the melt in the residual chamber cooled and changed its composition and properties. This caused the fluid to boil and segregate into immiscible phases: a vapor solution and a brine extremely rich in Cl, F, K, Cs, Mn, Fe, and Al. The fluoride and silicate liquids were immiscible; the silicate melts had abnormal Cs and As contents; changes in the composition and properties of the magmatic fluids caused them to boil and produce brines. All this is evidence for complex fluid–magma interaction and heterogeneous ongonitic magma during the crystallization of the Ary-Bulak rocks. These processes were favored by the low viscosity and high mobility of the F- and water-rich ongonite melt, intense melt convection in the residual chamber, and rising fluid pressure during its degassing.  相似文献   

4.
Lanthanide tetrad effects are often observed in REE patterns of more highly evolved Variscan peraluminous granites of mid-eastern Germany (Central Erzgebirge, Western Erzgebirge, Fichtelgebirge, and Northern Oberpfalz). The degree of the tetrad effect (TE1,3) is estimated and plotted vs. K/Rb, Sr/Eu, Eu/Eu1, Y/Ho, and Zr/Hf. The diagrams reveal that the tetrad effect develops parallel to granite evolution, and significant tetrad effects are strictly confined to highly differentiated samples. Mineral fractionation as a cause for the tetrad effect is not supported by a calculated Rayleigh fractionation, which also could not explain the fractionation trends of Sr/Eu and Eu/Eu1. The strong decrease of Eu concentrations in highly evolved rocks suggests that Eu fractionates between the residual melt and a coexisting aqueous high-temperature fluid. Mineral fractionation as a reason for the tetrad effect is even more unlikely as REE patterns of accessory minerals display similar tetrad effects as the respective host rocks. The accessory minerals inherit the REE signature of the melt and do not contribute to the bulk-rock tetrad effect via mineral fractionation. These results point in summary to significant changes of element fractionation behavior in highly evolved granitic melts: ionic radius and charge, which commonly control the element distribution between mineral and melt, are no longer the exclusive control. The tetrad effect and the highly fractionated trace element ratios of Y/Ho and Zr/Hf indicate a trace element behavior that is similar to that in aqueous systems in which chemical complexation is of significant influence. This distinct trace element behavior and the common features of magmatic-hydrothermal alteration suggest the increasing importance of an aqueous-like fluid system during the final stages of granite crystallization. The positive correlation of TE1,3 with bulk-rock fluorine contents hints at the importance of REE fluorine complexation in generating the tetrad effect. As the evolution of a REE pattern with tetrad effect (M-type) implies the removal of a respective mirroring REE pattern (W-type), the tetrad effect identifies open system conditions during granite crystallization.  相似文献   

5.
Behaviour of rare earth elements in geothermal systems of New Zealand   总被引:2,自引:0,他引:2  
Rare earth element (REE) patterns of hydrothermally altered rhyolite from geothermal systems located in the Taupo Volcanic Zone in the North Island of New Zealand provide evidence of REE mobility. REE trends of unaltered rhyolites are characterised by moderate LREE enrichment ((La/Lu)cn = 3.84 to 5.62) and pronounced negative Eu anomalies. In contrast, REE patterns of hydrothermally altered rhyolites commonly exhibit different signatures and may be placed into four chemically and petrographically distinct categories. Rocks with clay + quartz + feldspar + calcite (±zeolites, epidote, sphene, chlorite, opaque minerals) assemblages typically display patterns subparallel to fresh rock, whereas, samples which contain quartz + chlorite, or quartz + clay + zeolite assemblages have flat patterns without Eu anomalies, and highly silicified samples are characterised by depleted, bowed REE trends. These patterns may be produced by interaction with alkaline or acid fluids. A fourth group of very intensely altered samples, affected by interaction with acid fluids, exhibits unusual REE trends with highly enriched HREE and depleted LREE, or depleted HREE.These results indicate that some of the REE released by the breakdown of primary phases during alteration are transported away in the fluid. In addition, the degree of depletion is positively correlated with alteration intensity and the fluid/rock ratio. The similarity of REE patterns resulting from alteration by alkaline and acid fluids suggests that the shape of the REE trends is controlled principally by fluid/rock ratios and secondarily by mineralogy. The REE are retained in rocks with a diverse alteration mineralogy, whereas in samples with only one dominant alteration phase (e.g. quartz) it is more probable that not all REE liberated during alteration can be accommodated in the altered rock. Eu commonly behaves differently from the other REE, possibly due to the dominance of Eu2+.  相似文献   

6.
Summary Rare Earth Element (REE) data of 34 samples of magmatic rocks from the Lofoten Islands in Norway lend support to the derivation of anorthosites, ferrodiorites and jotunites by fractionation and cumulus processes from typical basaltic magma. Both REE concentration and Eu anomalies (expressed as Eu/Eu*) form continuous linear trends from anorthosite towards gabbro, ferrodiorite and jotunite in discrimination diagrams against molar CaO/Al2O3 ratios indicating the predominant accumulation of plagioclase. Eu/Eu* decreases from about 4 in the cumulates (anorthosites) to around 1 in the fine-grained gabbroic dikes and to below 1 in some ferrodiorites and the jotunite. The various types of ferrodiorites and the jotunite are regarded as residual liquids, in some cases with variable amounts of cumulus plagioclase. The whole fractionation series from gabbro towards anorthosites and ferrodiorites can be observed in a single intrusion. With increasing fractionation, the REE patterns generally change from flat, slightly LREE-enriched or LREE-depleted to steep and strongly LREE-enriched. These changes and the REE abundances are mainly controlled by the abundance of apatite. Temporally and spatially related mangerites and charnockites form a trend from low-SiO2 mangerites with Eu/Eu* > 1 to intermediate-SiO2 acidic mangerites with Eu/Eu* ≈ 1 and charnockites with Eu/Eu* < 1. Accordingly, the low-SiO2 mangerites are interpreted as alkali feldspar-rich cumulates and the charnockites as residual liquids derived from the acidic mangerites. The mangerites with Eu/Eu* around 1 have patterns similar to those of some highly evolved ferrodiorites possibly indicating a genetic link. Received December 12, 1999; revised version accepted November 15, 2000  相似文献   

7.
Shallow groundwater and hot springs were collected from northeastern Guangdong Province, Southeast China, to determine the concentrations and fractionation patterns of rare-earth elements(REE). The results show that the La, Ce and Nd of REEs are abundant in groundwater and rock samples, and the ∑REE contents in groundwater and rock samples range from 126.5 to 2875.3 ng/L, and 79.44 to 385.85 mg/L, respectively. The shallow groundwater has slightly HREE-enriched PAAS-normalized patterns. However, the granitic rocks PAAS-normalized patterns, with remarkable negative Eu anomalies, are different from that of shallow groundwater. The enrichment of HREE is considered to be controlled by REE complexation and readsorption for most groundwater has Ce and Eu positive anomalies. The Ce and Eu anomalies in groundwater are controlled by redox conditions. Moreover, the Fe-contain sediments dissolution and/or the reduction of Fe oxyhydroxides are another factor contributing to Ce anomalies. The Eu anomalies in groundwater are controlled by the preferential mobilization of Eu2+ during water-rock interaction compared to Eu3+.  相似文献   

8.
Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.  相似文献   

9.
Tin deposits are often closely associated with granitic intrusions. In this study, we analyzed tin partition coefficients between different fluids and melts (\({\text{D}}_{Sn}^{aq.fl./melt}\)) as well as various crystals and melts \({\text{D}}_{Sn}^{aq.fl./melt}\)(\({\text{D}}_{Sn}^{crystal/melt}\)) from the Furong tin deposit associated with the Qitianling A-type granite. Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids, melts, and minerals. Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content, high volatile content, and low oxygen fugacity. Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage. Furthermore, the volatiles F and Cl in the magma play important roles in tin partitioning behavior. Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase. High Cl content in the aqueous fluid catalyzes water–rock interaction and leads to the extraction of tin from tin-bearing minerals. All these findings support a hydrothermal origin for the tin deposits. In light of the geotectonic setting, petrochemical characteristics, and mineralizing physicochemical conditions of the Furong tin deposit, it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.  相似文献   

10.
The Soufrière Hills Volcano in Montserrat erupts a Cl-rich, porphyritic andesite. HCl degassing accompanies eruption and is dependent on the growth rate of the lava dome. The magma contains hornblende phenocrysts that show repetitive zoning in most elements, including Cl. On the basis of the zoning data, (Cl/OH) ratios in the melt, calculated from partitioning data, increase rimward through each zone, indicating that the phenocrysts formed under conditions of varying (Cl/OH)m. An empirical relationship between A-site occupancy in the hornblende and temperature implies that crystallisation of each zone is also accompanied by increasing temperature. Each zone ends at a resorption horizon, and crystallisation recommences at lower temperature and (Cl/OH)m. Melt inclusion H2O and Cl contents for the 8th January 2007 explosive eruption can be explained by closed-system degassing with DClfl-m between 5 and 30, or by open-system degassing accompanied by a small amount of crystallisation. However, neither simple closed-system degassing nor convective circulation of magma can explain the positive correlation of (Cl/OH)m with temperature. We suggest that the zoning can be caused by accumulation of CO2-rich vapour in the andesite, probably as a result of mafic magma injection into the chamber. Decreasing H2O fugacity and/or increasing Clm result in increasing (Cl/OH)m while heat transferred with the volatiles causes the rise in temperature. Intermittently, the accumulated fluid is lost to the surface, possibly as a result of renewed eruptive activity. This model requires the CO2-rich fluid to be decoupled from the magma, consistent with previous observations of continuous CO2 emissions at the surface.  相似文献   

11.
The 2010 eruption of Merapi (VEI 4) was the volcano’s largest since 1872. In contrast to the prolonged and effusive dome-forming eruptions typical of Merapi’s recent activity, the 2010 eruption began explosively, before a new dome was rapidly emplaced. This new dome was subsequently destroyed by explosions, generating pyroclastic density currents (PDCs), predominantly consisting of dark coloured, dense blocks of basaltic andesite dome lava. A shift towards open-vent conditions in the later stages of the eruption culminated in multiple explosions and the generation of PDCs with conspicuous grey scoria and white pumice clasts resulting from sub-plinian convective column collapse. This paper presents geochemical data for melt inclusions and their clinopyroxene hosts extracted from dense dome lava, grey scoria and white pumice generated during the peak of the 2010 eruption. These are compared with clinopyroxene-hosted melt inclusions from scoriaceous dome fragments from the prolonged dome-forming 2006 eruption, to elucidate any relationship between pre-eruptive degassing and crystallisation processes and eruptive style. Secondary ion mass spectrometry analysis of volatiles (H2O, CO2) and light lithophile elements (Li, B, Be) is augmented by electron microprobe analysis of major elements and volatiles (Cl, S, F) in melt inclusions and groundmass glass. Geobarometric analysis shows that the clinopyroxene phenocrysts crystallised at depths of up to 20 km, with the greatest calculated depths associated with phenocrysts from the white pumice. Based on their volatile contents, melt inclusions have re-equilibrated during shallower storage and/or ascent, at depths of ~0.6–9.7 km, where the Merapi magma system is interpreted to be highly interconnected and not formed of discrete magma reservoirs. Melt inclusions enriched in Li show uniform “buffered” Cl concentrations, indicating the presence of an exsolved brine phase. Boron-enriched inclusions also support the presence of a brine phase, which helped to stabilise B in the melt. Calculations based on S concentrations in melt inclusions and groundmass glass require a degassing melt volume of 0.36 km3 in order to produce the mass of SO2 emitted during the 2010 eruption. This volume is approximately an order of magnitude higher than the erupted magma (DRE) volume. The transition between the contrasting eruptive styles in 2010 and 2006 is linked to changes in magmatic flux and changes in degassing style, with the explosive activity in 2010 driven by an influx of deep magma, which overwhelmed the shallower magma system and ascended rapidly, accompanied by closed-system degassing.  相似文献   

12.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

13.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

14.
Plagioclase feldspar/magmatic liquid partition coefficients for Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE have been determined experimentally at 1 atm total pressure in the temperature range 1150–1400°C. Natural and synthetic melts representative of basaltic and andesitic bulk compositions were used, crystallizing plagioclase feldspar in the composition range An35–An85. Partition coefficients for Sr are greater than unity at all geologically reasonable temperatures, and for Ba are less than unity above approximately 1060°C. Both are strongly dependent upon temperature. Partition coefficients for the trivalent REE are relatively insensitive to temperature. At fixed temperature they decrease monotonically from La to Lu. The partition of Eu is a strong function of oxygen fugacity. Under extreme reducing conditions DEu approaches the value of DSr.  相似文献   

15.
A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu+2 species. Moreover, Eu+2 forms strong aqueous complexes with dissolved Cl at virtually all redox conditions. Thus, high Cl concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.  相似文献   

16.
The chemical analysis of 19 water wells in Ferdows area, Northeastern Iran, has been evaluated to determine the hydrogeochemical processes and ion concentration background in the region. In the study area, the order of cation and anion abundance is Na+ > Ca2+ > Mg2+ > K+ and Cl? > SO 4 ?2  > HCO3 ? > NO3 ?, respectively, and the dominating hydrochemical types are Na–Cl. Most metal concentrations in water depend on the mineral solubility, and pH, Eh, and salinity of the solution. Their ΣREE concentrations showed excellent correlations with parameters such as TDS and pH. North American Shale Composite (NASC)-normalized REE patterns are enriched in the HREEs relative to the LREEs for all groundwaters. They all have positive Eu anomalies (Eu/Eu* = 0.752–3.934) and slightly negative Ce anomalies (Ce/Ce* = 0.019–1.057). Reduction–oxidation, complexation, desorption, and re-adsorption alter groundwater REE concentrations and fractionation patterns. The positive Eu anomalies in groundwaters are probably due to preferential mobilization of Eu2+ relative to the trivalent REEs in the reducing condition.  相似文献   

17.
Fluorite can be used as a probe for the source of Sr and REE, as well as for the Sr and Nd isotope systematics of mineralizing solutions, allowing characterization of the composition, oxidation state and sources of the fluids. The 87Sr / 86Sr ratios in vein fluorite from the Santa Catarina Fluorite District, southern Brazil, are low (0.720 to 0.745) relative to those of the majority of host granites at the time of mineralization (90 Ma), but are similar to those of less abundant and less evolved Sr- and Ca-rich granites and plagioclases of the heterogeneous Pedras Grandes granite association. Major contributions of Sr from the unradiogenic Parana Basin rocks (87Sr / 86Sr90 Ma = 0.705 to 0.718) are unlikely, considering the radiogenic character of the lower 87Sr / 86Sr end-member in fluorite mixing lines. Estimated fluorite fluid partition coefficients (KdSr-Ca = 0.019 and DSr ≈ 600) indicate a Sr / Ca ratio in the fluorite-forming solution of 0.012, and Sr contents of 0.05 to 0.25 ppm, which are similar to those of present-day granitic geothermal waters. Initial Nd isotopic compositions of the vein fluorites (0.5120 to 0.512) are similar to those of the Pedras Grandes granites. The 143Nd / 144Nd90 Ma of the evolved granites of the Tabuleiro granite association, their accessory fluorites and the Parana Basin rocks are considerably more radiogenic (0.5120 to 0.5127) and these are thus considered to be unlikely sources of the fluids. The REE patterns of vein fluorites, normalized to upper continental crust, show a range of LREE-depleted patterns, with highly variable positive and negative Eu anomalies. The host Pedras Grandes granites show flat to slightly depleted UCC normalized LREE patterns with strong negative Eu anomalies. Depletion of the LREE in fluorites resulted from the mobility of HREE fluoride complexes during fluid migration. A REE fractionation model based on ionic potential ratios indicates that Eu3+ was stable during fluid migration and fluorite precipitation. The coexistence of pyrite and Eu3+ in the mineralizing fluids is consistent with low pH and oxygen fugacities near the hematite-magnetite buffer.  相似文献   

18.
Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C.In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are generally equivalent to the concentrations of F determined in the melt inclusions. In contrast, the Cl concentrations of the magmas estimated from apatite-melt equilibria (e.g., ca. 0.3-0.9 wt%) greatly exceed those determined in the melt inclusions from all of these volcanic systems except for the Bishop Tuff where the agreement is good. This discrepancy in estimated Cl concentrations of melt could result from several processes, including the hypothesis that the composition of apatite represents a comparatively Cl-enriched stage of magma evolution that precedes melt inclusion entrapment prior to the sequestration of Cl by coexisting magmatic aqueous and/or saline fluid(s).  相似文献   

19.
The powerful eruption in the Akademii Nauk caldera on January 2, 1996, marked a new activity phase of Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo 82-72), plagioclase (An 92-73), and clinopyroxene (Mg#83-70) in basalts of the 1996 eruption. The data were utilized to estimate the composition of the parental melt and the physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesian, highly aluminous basalt (SiO2 = 50.2 wt %, MgO = 5.6 wt %, Al2O3 = 17 wt %) of the mildly potassic type (K2O = 0.56 wt %) and contained much dissolved volatile components (H2O = 2.8 wt %, S = 0.17 wt %, and Cl = 0.11 wt %). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at a pressure of approximately 1.5 kbar, proceeded within a narrow temperature range of 1040 ± 20°C, and continued until a near-surface pressure of approximately 100 bar was reached. The degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under a pressure of less than 1 kbar. Magma degassing in an open system resulted in the escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. The release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated at 1.7 × 106 t H2O, 1.4 × 105 t S, and 1.5 × 104 t Cl. The concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in the plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.  相似文献   

20.
The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of DClapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ∼3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing DClapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes “saturated” in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which DClapatite/melt and DClfluid/melt begin to increase also depends on composition. The experiments reveal that DFapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so DFapatite/melt is constant for a wide range of composition.The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号