首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The terrestrial carbon cycle and the role of atmospheric CO2 concentrations in controlling global temperatures can be inferred from the study of ancient soils (paleosols). Soil-formed goethite and calcite have been the primary minerals used as a geochemical proxy for reconstructing atmospheric pCO2 from ancient terrestrial records. In the case of goethite, optimum sampling strategies for reconstructing pCO2 focus on the portion of the soil profile that displays steep gradients in both soil CO2 concentration and δ13C values of soil CO2 such that a keeling plot can be developed for a given soil and atmospheric pCO2 can be calculated from it. We report data from a Carboniferous paleosol that depart from the expected linear trends. The results indicate that pedogenic goethite is sensitive to variations in the isotopic composition of soil CO2, over a range of timescales, and can record these variations in the carbon isotope composition and mole fraction of Fe(CO3)OH in solid solution with goethite. We explore possible environmental conditions that can drive these changes as a function of either moisture controlled variations in soil respired CO2 or in the residence time of carbon in soils. The implications of this result are overestimation of paleoatmospheric pCO2 from pedogenic goethite.  相似文献   

2.
The rise of large vascular plants during the mid-Paleozoic brought about a major increase in the rates of weathering of silicate minerals that induced a drop in the level of atmospheric CO2 and contributed, via the atmospheric greenhouse effect, to global cooling and the initiation of the most long lived and a really extensive glaciation of the past 550 million years. Sedimentary burial of the microbiologically resistant remains of the plants resulted during the Permo-Carboniferous in both further lowering of CO2 and in elevation of atmospheric O2. Evidence of changes in CO2 and O2 are provided by mathematical models, studies of paleosols, fossil plants, fossil insects, and the effects of modern plants on silicate weathering, and by laboratory studies of the effects of changes in O2 on plants and insects. To cite this article: R.A. Berner, C. R. Geoscience 335 (2003).  相似文献   

3.
CO2 consumption by chemical weathering is an integral part of the boundless carbon cycle, whose spatial patterns and controlling factors on continental scale are still not fully understood. A dataset of 338 river catchments throughout North America was used to empirically identify predictors of bicarbonate fluxes by chemical weathering and interpret the underlying controlling factors. Detailed analysis of major ion ratios enables distinction of the contributions of silicate and carbonate weathering and thus quantifying CO2 consumption. Extrapolation of the identified empirical model equations to North America allows the analysis of the spatial patterns of the CO2 consumption by chemical weathering.Runoff, lithology and land cover were identified as the major predictors of the riverine bicarbonate fluxes and the associated CO2 consumption. Other influence factors, e.g. temperature, could not be established in the models. Of the distinguished land cover classes, artificial surfaces, dominated by urban areas, increase bicarbonate fluxes most, followed by shrubs, grasslands, managed lands, and forests. The extrapolation results in an average specific bicarbonate flux of 0.3 Mmol km−2 a−1 by chemical weathering in North America, of which 64% originates from atmospheric CO2, and 36% from carbonate mineral dissolution. Chemical weathering in North America thus consumes 50 Mt atmospheric CO2-C per year. About half of that originates from 10% of the area of North America.The estimated strength of individual predictors differs from previous studies. This highlights the need for a globally representative set of regionally calibrated models of CO2 consumption by chemical weathering, which apply very detailed spatial data to resolve the heterogeneity of earth surface processes.  相似文献   

4.
Theoretical models predict a marked increase in atmospheric O2 to ∼35% during the Permo-Carboniferous (∼300 Ma) occurring against a low (∼0.03%) CO2 level. An upper O2 value of 35%, however, remains disputed because ignition data indicate that excessive global forest fires would have ensued. This uncertainty limits interpretation of the role played by atmospheric oxygen in Late Paleozoic biotic evolution. Here, we describe new results from laboratory experiments with vascular land plants that establish that a rise in O2 to 35% increases isotopic fractionation (Δ13C) during growth relative to control plants grown at 21% O2. Despite some effect of the background atmospheric CO2 level on the magnitude of the increase, we hypothesize that a substantial Permo-Carboniferous rise in O2 could have imprinted a detectable geochemical signature in the plant fossil record. Over 50 carbon isotope measurements on intact carbon from four fossil plant clades with differing physiological ecologies and ranging in age from Devonian to Cretaceous reveal a substantial Δ13C anomaly (5‰) occurring between 300 and 250 Ma. The timing and direction of the Δ13C excursion is consistent with the effects of a high O2 atmosphere on plants, as predicted from photosynthetic theory and observed in our experiments. Preliminary calibration of the fossil Δ13C record against experimental data yields a predicted O2/CO2 mixing ratio of the ancient atmosphere consistent with that calculated from long-term models of the global carbon and oxygen cycles. We conclude that further work on the effects of O2 in the combustion of plant materials and the spread of wildfire is necessary before existing data can be used to reliably set the upper limit for paleo-O2 levels.  相似文献   

5.
Evidence from laboratory experiments indicates that fractionation against the heavy stable isotope of carbon (Δ13C) by bryophytes (liverworts and mosses) is strongly dependent on atmospheric CO2. This physiological response may therefore provide the basis for developing a new terrestrial CO2 proxy [Fletcher, B.J., Beerling, D.J., Brentnall, S.J., Royer, D.L., 2005. Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a Cretaceous case study. Global Biogeochem. Cycles19, GB3012]. Here, we establish a theoretical basis for the proxy by developing an extended model of bryophyte carbon isotope fractionation (BRYOCARB) that integrates the biochemical theory of photosynthetic CO2 assimilation with controls on CO2 supply by diffusion from the atmosphere. The BRYOCARB model is evaluated against measurements of the response of liverwort photosynthesis and Δ13C to variations in atmospheric O2, temperature and irradiance at different CO2 concentrations. We show that the bryophyte proxy is at least as sensitive to variations in atmosphere CO2 as the two other leading carbon isotope-based approaches to estimating palaeo-CO2 levels (δ13C of phytoplankton and of paleosols). Mathematical inversion of BRYOCARB provides a mechanistic means of estimating atmospheric CO2 levels from fossil bryophyte carbon that can explicitly account for the effects of past differences in O2 and climate.  相似文献   

6.
We investigated the effect of CO2 and primary production on the carbon isotopic fractionation of alkenones and particulate organic matter (POC) during a natural phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi. In nine semi-closed mesocosms (∼11 m3 each), three different CO2 partial pressures (pCO2) in triplicate represented glacial (∼180 ppmv CO2), present (∼380 ppmv CO2), and year 2100 (∼710 ppmv CO2) CO2 conditions. The largest shift in alkenone isotopic composition (4-5‰) occurred during the exponential growth phase, regardless of the CO2 concentration in the respective treatment. Despite the difference of ∼500 ppmv, the influence of pCO2 on isotopic fractionation was marginal (1-2‰). During the stationary phase, E. huxleyi continued to produce alkenones, accumulating cellular concentrations almost four times higher than those of exponentially dividing cells. Our isotope data indicate that, while alkenone production was maintained, the interaction of carbon source and cellular uptake dynamics by E. huxleyi reached a steady state. During stationary phase, we further observed a remarkable increase in the difference between δ13C of bulk organic matter and of alkenones spanning 7-12‰. We suggest that this phenomenon is caused mainly by a combination of extracellular release of 13C-enriched polysaccharides and subsequent particle aggregation induced by the production of transparent exopolymer particles (TEP).  相似文献   

7.
A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182-204] for CO2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O2 [Berner R.A., 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta65, 685-694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O2 of using different initial starting conditions; (3) the effect on O2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic δ13C for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O2 of varying the size of O2 feedback during sedimentary pyrite formation; (5) the effect on O2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci.306 (in press)]. Results show a similar trend of atmospheric CO2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O2 in the Permian, a secondary less-broad peak centered near the Silurian/Devonian boundary, variation between 15% and 20% O2 during the Cambrian and Ordovician, a very sharp drop from 30% to 15% O2 at the Permo-Triassic boundary, and a more-or less continuous rise in O2 from the late Triassic to the present.  相似文献   

8.
Traditionally, the application of stable isotopes in Carbon Capture and Storage (CCS) projects has focused on δ13C values of CO2 to trace the migration of injected CO2 in the subsurface. More recently the use of δ18O values of both CO2 and reservoir fluids has been proposed as a method for quantifying in situ CO2 reservoir saturations due to O isotope exchange between CO2 and H2O and subsequent changes in δ18OH2O values in the presence of high concentrations of CO2. To verify that O isotope exchange between CO2 and H2O reaches equilibrium within days, and that δ18OH2O values indeed change predictably due to the presence of CO2, a laboratory study was conducted during which the isotope composition of H2O, CO2, and dissolved inorganic C (DIC) was determined at representative reservoir conditions (50 °C and up to 19 MPa) and varying CO2 pressures. Conditions typical for the Pembina Cardium CO2 Monitoring Pilot in Alberta (Canada) were chosen for the experiments. Results obtained showed that δ18O values of CO2 were on average 36.4 ± 2.2‰ (1σ, n = 15) higher than those of water at all pressures up to and including reservoir pressure (19 MPa), in excellent agreement with the theoretically predicted isotope enrichment factor of 35.5‰ for the experimental temperatures of 50 °C. By using 18O enriched water for the experiments it was demonstrated that changes in the δ18O values of water were predictably related to the fraction of O in the system sourced from CO2 in excellent agreement with theoretical predictions. Since the fraction of O sourced from CO2 is related to the total volumetric saturation of CO2 and water as a fraction of the total volume of the system, it is concluded that changes in δ18O values of reservoir fluids can be used to calculate reservoir saturations of CO2 in CCS settings given that the δ18O values of CO2 and water are sufficiently distinct.  相似文献   

9.
Chemical and stable carbon isotopic modifications during the freezing of artificial seawater were measured in four 4 m3 tank incubations. Three of the four incubations were inoculated with a nonaxenic Antarctic diatom culture. The 18 days of freezing resulted in 25 to 27 cm thick ice sheets overlying the residual seawater. The ice phase was characterized by a decrease in temperature from −1.9 to −2.2°C in the under-ice seawater down to −6.7°C in the upper 4 cm of the ice sheet, with a concurrent increase in the salinity of the under-ice seawater and brine inclusions of the ice sheet as a result of physical concentration of major dissolved salts by expulsion from the solid ice matrix. Measurements of pH, total dissolved inorganic carbon (CT) and its stable isotopic composition (δ13CT) all exhibited changes, which suggest minimal effect by biological activity during the experiment. A systematic drop in pH and salinity-normalized CT by up to 0.37 pHSWS units and 376 μmol C kg−1 respectively at the lowest temperature and highest salinity part of the ice sheet were coupled with an equally systematic 13C enrichment of the CT. Calculations based on the direct pH and CT measurements indicated a steady increase in the in situ concentration of dissolved carbon dioxide (CO2(aq)) with time and increasing salinity within the ice sheet, partly due to changes in the dissociation constants of carbonic acid in the low temperature-high salinity range within sea ice. The combined effects of temperature and salinity on the solubility of CO2 over the range of conditions encountered during this study was a slight net decrease in the equilibrium CO2(aq) concentration as a result of the salting-out overriding the increase in solubility with decreasing temperature. Hence, the increase in the in situ CO2(aq) concentration lead to saturation or supersaturation of the brine inclusions in the ice sheet with respect to atmospheric pCO2 (≈3.5 × 10−4 atm). When all physico-chemical processes are considered, we expect CO2 degassing and carbonate mineral precipitation from the brine inclusions of the ice sheet, which were saturated or highly supersaturated with respect to both the anhydrous (calcite, aragonite, vaterite) and hydrated (ikaite) carbonate minerals.  相似文献   

10.
Measured mole fractions (X) and δ13C values of the Fe(CO3)OH component in pedogenic goethite from a mid-latitude Oxisol of Early Eocene age (≈52 Ma B.P.) range from 0.0014 to 0.0064 and −20.1 to −15.4‰, respectively. These values of X imply that concentrations of CO2 gas in the paleosol were ≈7400 to ≈34,000 ppm. δ13C and 1/X are correlated and define a linear, soil-CO2 diffusive mixing line with a positive slope. Such positive slopes are characteristic of mixing of two isotopically distinct CO2 endmembers (atmospheric CO2 and CO2 from oxidation of soil organic matter). From the intercept of the mixing line, it is calculated that the δ 13C value of organic matter in the ancient soil was ≈−28.0‰. The magnitude of the slope implies an Early Eocene atmospheric CO2 concentration of ≈2700 ppm.A simple model for forest soils suggests that a “canopy effect” may cause atmospheric CO2 concentrations deduced from pedogenic minerals to underestimate the actual concentrations of atmospheric CO2. If a significant forest canopy were present at the time of formation of pedogenic goethite in the Ione Fm, the concentration of 2700 ppm calculated for atmospheric CO2 could be slightly low, but the underestimate is expected to be < ≈300 ppm (i.e., less than the analytical uncertainty). The relatively high concentration of 2700 ppm inferred for atmospheric CO2 at ≈52 Ma B.P. would have been coincident with the Early Eocene climatic optimum. This result seems to support the case for an important role for variations of atmospheric CO2 in the modification of global paleoclimate.  相似文献   

11.
The Mid-Brunhes dissolution interval (MBDI) represents a period of global carbonate dissolution, lasting several hundred thousand years, centred around Marine Isotope Stage (MIS) 11. Here we report the effects of dissolution in ODP core 982, taken from 1134 m in the North Atlantic. Paradoxically, records of atmospheric CO2 from Antarctic ice-cores reveal no long term trend over the last 400 kyr and suggest that CO2 during MIS 11 was no higher than during the present interglacial. We suggest that a global increase in pelagic carbonate production during this period, possibly related to the proliferation of the Gephyrocapsa coccolithophore, could have altered marine carbonate chemistry in such a way as to drive increased dissolution under the constraints of steady state. An increase in the production of carbonate in surface waters would cause a drawdown of global carbonate saturation and increase dissolution at the seafloor. In order to reconcile the record of atmospheric CO2 variability we suggest that an increase in the flux of organic matter from the surface to deep ocean, associated with either a net increase in primary production or the enhanced ballasting effect provided by an increased flux of CaCO3, could have countered the effect of increased calcification on CO2.  相似文献   

12.
The solubility of CO2 in dacitic melts equilibrated with H2O-CO2 fluids was experimentally investigated at 1250°C and 100 to 500 MPa. CO2 is dissolved in dacitic glasses as molecular CO2 and carbonate. The quantification of total CO2 in the glasses by mid-infrared (MIR) spectroscopy is difficult because the weak carbonate bands at 1430 and 1530 cm−1 can not be reliably separated from background features in the spectra. Furthermore, the ratio of CO2,mol/carbonate in the quenched glasses strongly decreases with increasing water content. Due to the difficulties in quantifying CO2 species concentrations from the MIR spectra we have measured total CO2 contents of dacitic glasses by secondary ion mass spectrometry (SIMS).At all pressures, the dependence of CO2 solubility in dacitic melts on xfluidCO2,total shows a strong positive deviation from linearity with almost constant CO2 solubility at xCO2fluid > 0.8 (maximum CO2 solubility of 795 ± 41, 1376 ± 73 and 2949 ± 166 ppm at 100, 200 and 500 MPa, respectively), indicating that dissolved water strongly enhances the solubility of CO2. A similar nonlinear variation of CO2 solubility with xCO2fluid has been observed for rhyolitic melts in which carbon dioxide is incorporated exclusively as molecular CO2 (Tamic et al., 2001). We infer that water species in the melt do not only stabilize carbonate groups as has been suggested earlier but also CO2 molecules.A thermodynamic model describing the dependence of the CO2 solubility in hydrous rhyolitic and dacitic melts on T, P, fCO2 and the mol fraction of water in the melt (xwater) has been developed. An exponential variation of the equilibrium constant K1 with xwater is proposed to account for the nonlinear dependence of xCO2,totalmelt on xCO2fluid. The model reproduces the CO2 solubility data for dacitic melts within ±14% relative and the data for rhyolitic melts within 10% relative in the pressure range 100-500 MPa (except for six outliers at low xCO2fluid). Data obtained for rhyolitic melts at 75 MPa and 850°C show a stronger deviation from the model, suggesting a change in the solubility behavior of CO2 at low pressures (a Henrian behavior of the CO2 solubility is observed at low pressure and low H2O concentrations in the melt). We recommend to use our model only in the pressure range 100-500 MPa and in the xCO2fluid range 0.1-0.95. The thermodynamic modeling indicates that the partial molar volume of total CO2 is much lower in rhyolitic melts (31.7 cm3/mol) than in dacitic melts (46.6 cm3/mol). The dissolution enthalpy for CO2 in hydrous rhyolitic melts was found to be negligible. This result suggests that temperature is of minor importance for CO2 solubility in silicic melts.  相似文献   

13.
CO2全球循环及其同位素示踪研究   总被引:13,自引:1,他引:12       下载免费PDF全文
极地冰盖气泡研究表明,工业革命前大气圈天然CO2浓度约为280×10-6,天然CO2浓度变化反映了冰期-间冰期循环这一长期气候变化固有特征。工业革命后,大量人为CO2进人大气圈,人为CO2收支明显不平衡,一个大于2.6GTC/a的未知陆地生态汇很可能存在于北半球中纬度地带。土壤、岩溶作用、河流作用、地球化学作用、干旱-半干旱环境等系统以及海洋内部CO2循环的同位素示踪研究,可为人为CO2未知汇即“MissingSink”的探求提供线索。  相似文献   

14.
In a mid-continental North American grassland, solute concentrations in shallow, limestone-hosted groundwater and adjacent surface water cycle annually and have increased steadily over the 15-year study period, 1991-2005, inclusive. Modeled groundwater CO2, verified by measurements of recent samples, increased from 10−2.05 atm to 10−1.94 atm, about a 20% increase, from 1991 to 2005. The measured groundwater alkalinity and alkaline-earth element concentrations also increased over that time period. We propose that carbonate minerals dissolve in response to lowered pH that occurs during an annual carbonate-mineral saturation cycle. The cycle starts with low saturation during late summer and autumn when dissolved CO2 is high. As dissolved CO2 decreases in the spring and early summer, carbonates become oversaturated, but oversaturation does not exceed the threshold for precipitation. We propose that groundwater is a CO2 sink through weathering of limestone: soil-generated CO2 is transformed to alkalinity through dissolution of calcite or dolomite. The annual cycle and long-term increase in shallow groundwater CO2 is similar to, but greater than, atmospheric CO2.  相似文献   

15.
It is recognized that karst processes are actively involved in the current global carbon cycle based on twenty years research, and the carbon sink occurred in karst processes is possibly an important part of “missing sink” in global carbon cycle. In this paper, an overview is given on karst carbon cycle research, and influence factors, formed carbon pools (background carbon sink) and sink increase potentials of current karst carbon cycle are analyzed. Carbonate weathering could contribute to the imbalance item (BIM) and land use change item (ELUC) in the global carbon cycle model, owing to its uptake of both atmospheric CO2 (carbon sink effect) and CO2 produced by soil respiration (carbon source reduction effect). Karst carbon sink includes inorganic carbon sink resulted from hydrogeochemical process and organic carbon sink generated by aquatic photosynthetic DIC conversion, forming relatively stable river (reservoir) water body or sediment carbon sink. The sizes of both sinks are controlled by terrestrial ecosystems and aquatic ecosystems, respectively. Desertification rehabilitation and carbon sequestration by aquatic plants are two effective ways to increase the carbon sink in karst area. It is estimated that the rate of carbon sink is at least 381 000 t CO2/a with vegetation restoration and afforestation in southwest China karst area, while the annual organic carbon sink generated by aquatic photosynthesis is about 84 200 t C in the Pearl River Basin. The development of a soil CO2 based model for assessment of regional dissolution intensity will help to improve the estimation accuracy of carbon sink increase and potential, thus provide a more clear and efficient karst sink increase scheme and pathway to achieve the goals of “double carbon”. With the deep investigation on karst carbon cycle, mechanism and carbon sink effect, and the improvement of watershed carbon sink measurement methods and regional sink increase evaluation approaches. Karst carbon sink is expected to be included in the list of atmospheric CO2 sources/sinks of the global carbon budget in the near future.  相似文献   

16.
The capture and geological storage of CO2 can be used to reduce anthropogenic greenhouse gas emissions. To assess the environmental impact of potential CO2 leakage from deep storage reservoirs on the abundance and functional diversity of microorganisms in near-surface terrestrial environments, a natural CO2 vent (>90% CO2 in the soil gas) was studied as an analogue. The microbial communities were investigated using lipid biomarkers combined with compound-specific stable carbon isotope analyses, the determination of microbial activities, and the use of quantitative polymerase chain reactions (Q-PCR). With this complementary set of methods, significant differences between the CO2-rich vent and a reference site with a normal CO2 concentration were detected. The δ13C values of the plant and microbial lipids within the CO2 vent demonstrate that substantial amounts of geothermal CO2 were incorporated into the microbial, plant, and soil carbon pools. Moreover, the numbers of Archaea and Bacteria were highest at the reference site and substantially lower at the CO2 vent. Lipid biomarker analyses, Q-PCR, and the determination of microbial activities showed the presence of CO2-utilising methanogenic Archaea, Geobacteraceae, and sulphate-reducing Bacteria (SRB) mainly at the CO2 vent, only minor quantities were found at the reference site. Stable carbon isotopic analyses revealed that the methanogenic Archaea and SRB utilised the vent-derived CO2 for assimilatory biosynthesis. Our results show a shift in the microbial community towards anaerobic and acidophilic microorganisms as a consequence of the long-term exposure of the soil environment to high CO2 concentrations.  相似文献   

17.
We present one millennium-long (1171-year), and three 100 year long annually resolved δ13C tree-ring chronologies from ecologically varying Juniperus stands in the Karakorum Mountains (northern Pakistan), and evaluate their response to climatic and atmospheric CO2 changes. All δ13C records show a gradual decrease since the beginning of the 19th century, which is commonly associated with a depletion of atmospheric δ13C due to fossil fuel burning. Climate calibration of high-frequency δ13C variations indicates a pronounced summer temperature signal for all sites. The low-frequency component of the same records, however, deviates from long-term temperature trends, even after correction for changes in anthropogenic CO2. We hypothesize that these high-elevation trees show a response to both climate and elevated atmospheric CO2 concentration and the latter might explain the offset with target temperature data. We applied several corrections to tree-ring δ13C records, considering a range of potential CO2 discrimination changes over the past 150 years and calculated the goodness of fit with the target via calibration/verification tests (R2, residual trend, and Durbin-Watson statistics). These tests revealed that at our sites, carbon isotope fixation on longer timescales is affected by increasing atmospheric CO2 concentrations at a discrimination rate of about 0.012‰/ppmv. Although this statistically derived value may be site related, our findings have implications for the interpretation of any long-term trends in climate reconstructions using tree-ring δ13C, as we demonstrate with our millennium-long δ13C Karakorum record. While we find indications for warmth during the Medieval Warm Period (higher than today’s mean summer temperature), we also show that the low-frequency temperature pattern critically depends on the correction applied. Patterns of long-term climate variation, including the Medieval Warm Period, the Little Ice Age, and 20th century warmth are most similar to existing evidence when a strong influence of increased atmospheric CO2 on plant physiology is assumed.  相似文献   

18.
Incremental vacuum dehydration-decarbonation experiments were performed at 190°C on chemically “cleaned” aliquots of a gibbsite-dominated, Eocene-age bauxite sample with evolution of CO2 and H2O. “Plateau” F (CO2/H2O ratios) and δ13C values of the CO2 derived from gibbsite were attained over the dehydration interval, Xv(H2) = 0.16 to 0.67 (i.e., 16 to 67% breakdown of gibbsite). The plateau value of F for gibbsite was 0.0043 ± 0.0003, while the corresponding δ13C value of evolved CO2 was −16.0‰±0.4‰. Additional experiments on chemically cleaned aliquots included (1) treatment with a solution of 0.3M Na-Citrate + 0.1M Na-Dithionite and (2) an exchange experiment with 0.1 bar of 13C-depleted CO2 (−46‰) at 105°C for 64.5 h. Neither of these additional treatments resulted in a measurable perturbation of plateau values of F or δ13C for CO2 evolved from gibbsite during dehydroxylation. These results support published work on Holocene samples which suggested that CO2 occluded in gibbsite may preserve information on δ13C values of CO2 in ancient terrestrial systems. The plateau values of F observed in the Eocene gibbsite indicate that it may be possible to experimentally calibrate a relationship between the concentration of CO2 occluded in gibbsite and CO2 in the environment at the time of crystallization. Such a calibration would significantly enhance the value of gibbsite as a source of information on ancient oxidized carbon systems.  相似文献   

19.
CO2 injection in unmineable coal seams could be one interesting option for both storage and methane recovery processes. The objective of this study is to compare and model pure gas sorption isotherms (CO2 and CH4) for well-characterised coals of different maturities to determine the most suitable coal for CO2 storage. Carbon dioxide and methane adsorption on several coals have been investigated using a gravimetric adsorption method. The experiments were carried out using both CO2 and CH4 pure gases at 25 °C from 0.1 to 5 MPa (1 to 50 bar). The experimental results were fitted using Temkin's approach but also with the corrected Langmuir's and the corrected Tóth's equations. The two last approaches are more accurate from a thermodynamical point of view, and have the advantage of taking into account the fact that experimental data (isotherms) correspond to excess adsorption capacities. These approaches allow better quantification of the adsorbed gas. Determined CO2 adsorption capacities are from 0.5 to 2 mmol/g of dry coal. Modelling provides also the affinity parameters of the two gases for the different coals. We have shown these parameters determined with adsorption models could be used for classification and first selection of coals for CO2 storage. The affinity ratio ranges from a value close to 1 for immature coals to 41 for high rank coals like anthracites. This ratio allows selecting coals having high CO2 adsorption capacities. In our case, the modelling study of a significant number of coals from various ranks shows that anthracites seem to have the highest CO2 storage capacities. Our study provides high quality affinity parameters and values of CO2 and CH4 adsorption capacities on various coals for the future modelling of CO2 injection in coal seams.  相似文献   

20.
Anthropogenic greenhouse gas emissions may be offset by sequestering carbon dioxide (CO2) through the carbonation of magnesium silicate minerals to form magnesium carbonate minerals. The hydromagnesite [Mg5(CO3)4(OH)2·4H2O] playas of Atlin, British Columbia, Canada provide a natural model to examine mineral carbonation on a watershed scale. At near surface conditions, CO2 is biogeochemically sequestered by microorganisms that are involved in weathering of bedrock and precipitation of carbonate minerals. The purpose of this study was to characterize the weathering regime in a groundwater recharge zone and the depositional environments in the playas in the context of a biogeochemical model for CO2 sequestration with emphasis on microbial processes that accelerate mineral carbonation.Regions with ultramafic bedrock, such as Atlin, represent the best potential sources of feedstocks for mineral carbonation. Elemental compositions of a soil profile show significant depletion of MgO and enrichment of SiO2 in comparison to underlying ultramafic parent material. Polished serpentinite cubes were placed in the organic horizon of a coniferous forest soil in a groundwater recharge zone for three years. Upon retrieval, the cube surfaces, as seen using scanning electron microscopy, had been colonized by bacteria that were associated with surface pitting. Degradation of organic matter in the soil produced chelating agents and acids that contributed to the chemical weathering of the serpentinite and would be expected to have a similar effect on the magnesium-rich bedrock at Atlin. Stable carbon isotopes of groundwater from a well, situated near a wetland in the southeastern playa, indicate that  12% of the dissolved inorganic carbon has a modern origin from soil CO2.The mineralogy and isotope geochemistry of the hydromagnesite playas suggest that there are three distinct depositional environments: (1) the wetland, characterized by biologically-aided precipitation of carbonate minerals from waters concentrated by evaporation, (2) isolated wetland sections that lead to the formation of consolidated aragonite sediments, and (3) the emerged grassland environment where evaporation produces mounds of hydromagnesite. Examination of sediments within the southeastern playa–wetland suggests that cyanobacteria, sulphate reducing bacteria, and diatoms aid in producing favourable geochemical conditions for precipitation of carbonate minerals.The Atlin site, as a biogeochemical model, has implications for creating carbon sinks that utilize passive microbial, geochemical and physical processes that aid in mineral carbonation of magnesium silicates. These processes could be exploited for the purposes of CO2 sequestration by creating conditions similar to those of the Atlin site in environments, artificial or natural, where the precipitation of magnesium carbonates would be suitable. Given the vast quantities of Mg-rich bedrock that exist throughout the world, this study has significant implications for reducing atmospheric CO2 concentrations and combating global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号