首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Line profiles of He ii 4686 Å and He i 4713 Å from active regions in the chromosphere were observed during the total solar eclipse of February 16, 1980, with a grazing incidence objective grating spectrograph. The Doppler width of the He i triplet line of 4713 Å increases with height and the average width is compatible with width of metallic and hydrogen lines, suggesting that the kinetic temperature of He i triplet emitting region is T 8000 K. This can only be explained by recombination after photo-ionization due to coronal UV radiation. The Doppler width of the Paschen line of He ii 4686 is, without any correction for the separation of subcomponents of the line nor non-thermal velocity, 18.4 km s-1. This line width also shows a tendency to increase with height. After comparison with Doppler widths of He i 4713 and the EUV lines, and a necessary subtraction of non-thermal velocity, it is shown that this line is emitted in a 2 × 104 K temperature region, which again supports the view that this line is emitted through the recombination process after photoionization due to coronal XUV radiation below 228 Å.  相似文献   

2.
We identify the Balmer 9 and 11 lines of He ii at 959 Å and 942 Å in solar spectra. These lines are produced mainly by recombination following photoionization of He ii by coronal XUV radiation. From analysis of the line intensities, we confirm the theoretical model of Avrett et al. (1976), who found that an appreciable amount of He++ is present at temperatures of 1–2 × 104 K and that the anomalously strong He ii 304 line is produced primarily by collisional excitation. We also confirm the suggestion of Kohl (1977) that the photoionization-recombination process is more important in active regions than in the quiet Sun, and we find that the 304 line is produced largely by recombination in solar flares.  相似文献   

3.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

4.
Time sequences of He i and He ii resonance line intensities at several sites within the flare of 15 June, 1973 are derived from observations obtained with the Naval Research Laboratory's Slitless Spectroheliograph on Skylab. The data are compared with predictions in six model flare atmospheres based on two values for the heating rate and three for the flux of photoionizing coronal X-rays and EUV. A peak ionizing flux more than 103 times that in the quiet Sun is indicated. For most conditions in flare kernels the He ii L and L lines are found to be formed by collisional excitation, thereby contributing to the local cooling of the plasma at temperatures above 6 × 104 K. Emission in the higher Lyman lines is generally the result of a mixture of collisional excitation at these temperatures and photoionization and recombination at temperatures near 2.5 × 104 K. We discuss implications for the common practice of deriving stellar coronal fluxes from He ii 1640 Å fluxes assuming dominance of the recombination mechanism.Chief, Quantum Physics Division, National Institute of Standards and Technology.Operated jointly by the National Institute of Standards and Technology and the University of Colorado.Operated by the National Optical Astronomy Observatories of the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

5.
R. Fisher  T. Pope 《Solar physics》1971,20(2):389-399
Nine coronal emission lines representing five stages of Fe ionization and one stage of Ni were observed in an enhanced coronal region. The data from these observations are presented along with a density model of the enhanced region obtained from the FeXIII and NiXV emission line ratios as a function of position angle. The electron densities obtained from FeXIII lines range from N e = 108 to 109 cm–3, and are slightly lower for NiXV line data. Estimates of the variation of temperature over the enhanced region are inferred from the observed line intensities.  相似文献   

6.
We studied the EUV line spectra of three flare observed with the NRL slit spectrograph on Skylab. The electron densities in the flare transition-zone plasmas are determined from density-sensitive lines of Si iii and O iv. The electron densities in all three flares studied were greatest during the flare maximum with values of the order of 1012 cm–3. The density decreases by a factor of 2 to 3 in the decay phase of the flares. The intensities of EUV lines from the flare chromospheric and transition-zone plasmas all are greatly enhanced. In contrast to lines for Oi, Ci, Feii and other chromospheric ions, the lines of Oiv and Nv and other transition-zone lines are not only enhanced but also very much broadened.Fitting of the N v 1242 Å line with a two-gaussian model shows that for two of the flares studied, there is a red-shifted component in addition to an unshifted component. The shifted component in the N v line profiles is interpreted as due to a dynamic and moving plasma with a bulk motion velocity of 12 km s–1 for one flare and more than 70 km s–1 for the other. The broadened line profiles indicate that there are large turbulent mass motions with random velocities ranging from 30 to 80 km s–1.Ball Corporation. Now with NASA/Marshall Space Flight Center.  相似文献   

7.
We studied the evolution of a small eruptive flare (GOES class C1) from its onset phase using multi-wavelength observations that sample the flare atmosphere from the chromosphere to the corona. The main instruments involved were the Coronal Diagnostic Spectrometer (CDS) aboard SOHO and facilities at the Dunn Solar Tower of the National Solar Observatory/Sacramento Peak. Transition Region and Coronal Explorer (TRACE) together with Ramaty High-Energy Spectroscopic Imager (RHESSI) also provided images and spectra for this flare. Hα and TRACE images display two loop systems that outline the pre-reconnection and post-reconnection magnetic field lines and their topological changes revealing that we are dealing with an eruptive confined flare. RHESSI data do not record any detectable emission at energies ≥25 keV, and the observed count spectrum can be well fitted with a thermal plus a non-thermal model of the photon spectrum. A non-thermal electron flux F ≈ 5 × 1010 erg cm−2 s−1 is determined. The reconstructed images show a very compact source whose peak emission moves along the photospheric magnetic inversion line during the flare. This is probably related to the motion of the reconnection site, hinting at an arcade of small loops that brightens successively. The analysis of the chromospheric spectra (Ca II K, He I D3 and Hγ, acquired with a four-second temporal cadence) shows the presence of a downward velocity (between 10 and 20 km s−1) in a small region intersected by the spectrograph slit. The region is included in an area that, at the time of the maximum X-ray emission, shows upward motions at transition region (TR) and coronal levels. For the He I 58.4 and O v 62.97 lines, we determine a velocity of ≈−40 km s−1 while for the Fe XIX 59.22 line a velocity of ≈−80 km s−1 is determined with a two-component fitting. The observations are discussed in the framework of available hydrodynamic simulations and they are consistent with the scenario outlined by Fisher (1989). No explosive evaporation is expected for a non-thermal electron beam of the observed characteristics, and no gentle evaporation is allowed without upward chromospheric motion. It is suggested that the energy of non-thermal electrons can be dissipated to heat the high-density plasma, where possibly the reconnection occurs. The consequent conductive flux drives the evaporation process in a regime that we can call sub-explosive.  相似文献   

8.
A direct method for determining electron densities from emission line intensities of ions in the beryllium isoelectronic sequence is described and then applied to the analysis of extreme ultraviolet Ciii and Ov spectra from both quiet and active areas in the solar transition region. The results are consistent with a value of N e T e = 6 × 1014 cm-3K for the quiet Sun at temperatures of 5 × 104 to 3 × 105K. Electron densities are approximately five times greater in active regions than in the quiet Sun.  相似文献   

9.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

10.
R-matrix calculations of the 11S - 23S and 11S - 23P electron excitation rates in He - like Cv, Ovii, and Mgxi by Kingston and Tayal are used to interpolate results for Neix. Adoption of these in emission line strength calculations leads to values for the density-sensitiveR ratio very similar to those of Pradhanet al. and Wolfsonet al., although the temperature-sensitiveG ratios are approximately 10 to 20 % lower than those deduced by these authors. However the present theoretical value ofG at the temperature of maximum Neix emission,G(T m) = 0.82, is in excellent agreement with those observed by the SMM and P78-1 satellites for the 1980, November5 flare (G = 0.83 ± 0.01) and nonflaring active regions (G = 0.80 ± 0.05), respectively.  相似文献   

11.
New electron excitation rates for O vii calculated by Tayal and Kingston using the R-matrix method are used to determine theoretical emission line strengths. Values of the electron density sensitive ratio R (forbidden line to intercombination line) are found to be very similar to those deduced by other authors. However the temperature sensitive ratios G (intercombination plus forbidden lines to resonance line) are approximately 20% lower than the best previous estimates. The observed value of G for solar active regions (G = 1.0 ± 0.1) predicts an electron temperature in the range 1.1 × 106 K < T e < 1.8 × 106 K, which overlaps that of maximum O vii emissivity, T M = 1.8 × 106 K. In addition, the theoretical G versus T e curve is in excellent agreement with that observed for a Tokamak plasma.  相似文献   

12.
We present the results of an analysis of the winds of two WC10 central stars of planetary nebulae, CPD-56°8032 and He 2-113. These two stars have remarkably similar spectra, although the former exhibits somewhat broader emission line widths. High resolution spectra (up to R=50 000) were obtained in May 1993 for both objects at the 3.9 m AAT, using the UCL Echelle Spectrograph. The fluxes in individual Cii auto-ionising multiplet components, many of which were blended, were derived. Lines originating from auto-ionising resonance states situated in the C2+ continuum are very sensitive to the electron temperature, since the population of the these levels is close to LTE. The measured widths and profile shapes of these transitions are presented and are in excellent agreement with those predicted on the basis of their calculated auto-ionising lifetimes. The wind electron temperature is derived for both stars from the ratio of the fluxes in four such transitions (T e =18 500 K±1 500 K for CPD-56° 8032 andT e =13 600 K±800 K for He 2-113). Optical depth effects are investigated using normal recombination lines to obtain an independent wind electron temperature estimate in excellent agreement with the dielectronic line analysis.  相似文献   

13.
The purpose of this paper is to report on some intensity measurements of the Fe xiii lines at 10 747 Å and 10 798 Å made during the total eclipse of 12 November, 1966. Infrared spectra were taken of the solar corona at a dispersion of 90 Å per mm, using an RCA image converter and spectrograph aboard the NASA CV 990 aircraft off the coast of southern Brazil. The spectra have been reduced to equivalent width in terms of the coronal continuum and values derived for different points in the corona.The observed equivalent widths of the lines lie in the range 10 to 30 Å for the 10 747 line and 5 to 12 Å for the 10 798 line. The ratio of these equivalent widths is found to vary from 2.3 in the inner corona to 6 at a point 1.36 solar radii from the center of the Sun.The above results are discussed in terms of the excitation mechanisms involved in producing the lines. In particular, the results are compared with the recent theoretical calculations of Chevalier and Lambert, who are the first to include the effects of proton collisions in the excitation of the 3p 2 3 P levels of Fexiii. Our observations are consistent with an electron density of 4 × 108 in the inner corona; a value which compares favorably with those derived by other observers from the strength of the K continuum. These are, to our knowledge, the first eclipse observations of the infrared Fe xiii lines which indicate that proton collisions are important in the excitation of the coronal lines. The coronal abundance of iron is estimated from the equivalent width of the 10 747 line, and in common with other observers we find an overabundance as compared to the photospheric abundance by a factor of 10.  相似文献   

14.
Line intensity ratios of NeVI lines with respect to a resonance line of MgVI have been considered for electron density and temperature determinations within the chromosphere-corona transition region. The electron pressure within the transition region has been assumed to be constant. In addition, these ratios would enable us to estimate the relative element abundances of neon to magnesium. An attempt has been made to explain the extreme ultraviolet intensities of NeVI and MgVI lines as observed by ATM ultraviolet spectrometer. The observed intensities correspond to the average quiet-Sun conditions near solar minimum. Theoretical intensities for NeVI and MgVI lines have been computed using a model solar atmosphere. Theoretical intensities obtained by using the values 3.98 × 10–5 and 3.16 × 10–5 for element abundance of Ne and Mg, respectively, seem to agree well with the expected intensities. The agreement between some of the expected and computed intensities suggests the need for future observations at higher spectral resolutions to resolve difficulties arising out of blending due to two or more lines.  相似文献   

15.
Observations of solar X-ray line emission using crystal spectrometers during a large chromospheric flare have provided a list of wavelengths with a precision of 0.003 Å in first order of diffraction and correspondingly better in higher orders. In addition to the resonance, intersystem (1 1 S 0-2 3 P 1) and forbidden (1 1 S 0-2 3 S 1) transitions of ions of the Hei isoelectronic sequence, we have recorded satellite lines arising from ions in the Lii, Bei and Bi isoelectronic sequences. These satellite features are most prominent in the iron spectrum. Apparent decreases in the ratio of forbidden and intersystem line intensities of Mgxi and Sixiii during the flare are used to derive electron densities possibly as high as 1 × 1013 cm–3 in the Mgxi emitting region and 1 × 1014 cm–3 in the Sixiii region during the event. A search for satellite lines on the long-wavelength side of the Lyman-alpha line of Hi-like ions has yielded no positive identifications.  相似文献   

16.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

17.
Fluxes have been computed for Fex (6374 Å) and Fe xiv (5303 Å) lines as a function of solar radii and at various coronal tempratures. The electron density derived from the white light corona during the total solar eclipse of 1980 were used in the computations. Fluxes in adjacent continua have also been computed. The computed ratios of line flux to the square of continuum flux at a coronal temperature of 1.6 × 106 K show a good fit with the observed values for Fex line. Further, radiative excitation seems to dominate over collisional excitation beyond 1.3 solar radius.  相似文献   

18.
H. Zirin 《Solar physics》1970,11(3):497-512
Climax coronagraph observations of the accessible Fe lines, as well as the Caxv 5694 line at the time of the 1962 total eclipse, are analyzed. The spectra show that the ionization equilibrium of iron is not substantially changed in an intense coronal condensation, at least for the stages x through xv. The only exception is Fexv 7059, for which density effects are important. The stability of the ionization distribution is explained by the dynamic nature of the Fe ionization, with ions entering on the high side (Fexvi and up) due to rapid heating and then cooling through the visible stages.Comparison of the ionization distributions inferred from radiative and collisional excitation of the iron lines shows that the excitation must be by collisions everywhere at the heights examined (less than 50 000 km).The iron abundance in the corona is found to be 10–4 that of hydrogen, but this figure would be reduced by the amount of cyclic excitation.The peak electron density in the condensation is 8 × 109, and the peak value of the 5694 line/ continuum ratio is 2.5, in good agreement with calculations by Chevalier and Lambert.The ratio of the infrared Fexiii lines is measured along the limb and found to vary with electron density as expected, the 10 747/10 798 ratio is 7 or less at densities much below 109 and saturates at a value of 2 for densities above that amount.  相似文献   

19.
Observational evidence suggests that both the hard X-ray and ultraviolet emission from the impulsive phase of flares result from an electron beam. We present the results of model calculations that are consistent with this theory. The impulsive phase is envisioned as occurring in many small magnetically confined loops, each of which maintains an electron beam for only a few seconds. This model successfully matches several observed aspects of the impulsive phase. The corona is heated to less than 2 × 106 K, maximum enhanced emission occurs in lines formed near 105 K, and there is only slight enhancement between 105 and 2 × 106 K. The slope of the observed relationship between hard X-ray and Ov 1371 Å emission is also matched, but the relative emission is not. The calculations indicate that UV emission lines formed below a temperature of about 105 K will arise predominantly from the chromospheric region heated by the electron beam to transition region temperatures. Emission lines formed at higher temperatures will be produced in the transition region. This should be detectable in density-sensitive line ratios. To account successfully for the impulsive UV emission, the peak temperature in the impulsively heated loops must remain below about 2 × 106 K. Thus our model implies that the impulsive heating takes place in different loops from the hotter gradual phase emission.  相似文献   

20.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号