首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
气候变化和人类活动导致珠江流域水文变化,变化前后洪水频率分布显著不同.运用滑动秩和(Mann-Whitney U test)结合Brown-Forsythe、滑动T、有序聚类和Mann-Kendall检验法,并用累积距平曲线法获取年最大流量序列详细信息,综合确定样本最佳变化节点,并对水文变化成因做了系统分析.在此基础上,对整体序列、变化前后序列用线性矩法推求广义极值分布参数以及不同重现期设计流量.结果表明:(1)西江大部以及北江流域最佳变化节点在1991年左右;东江流域最佳变化节点与该流域内3大控制性水库建成时间基本吻合;(2)变化后,西江、北江年最大流量持续增加,洪峰强度增大,尤其是西江干流年最大流量显著增加;东江流域年最大流量显著减小,洪峰强度降低;(3)变化后,西江与北江洪水风险增加,尤其是下游珠三角地区本身受人类活动显著影响,加之西江与北江持续增加的洪水强度,珠三角地区发生洪水的强度及频次加剧,而东江洪水风险减小.此研究对于珠江流域在变化环境下的洪水风险评估与防洪抗灾具有重要意义.  相似文献   

3.
综合运用TWINSPAN数量分类和DCA排序方法评估了贺江流域硅藻群落,结合硅藻生物指数(IBD)、硅藻属指数(IDG)、硅藻营养化指数(TDI)和特定污染敏感指数(IPS)对其结果进行进一步验证.结果显示,TWINSPAN将贺江流域的38个样点分为4组,且群落Ⅰ到群落Ⅳ其生境质量逐渐变得单一,人为干扰程度逐渐加大;划分的四组群落在DCA排序图上有明显的界限,依据Van Dam硅藻生态指示意义,水环境污染程度从群落Ⅰ到群落Ⅳ逐渐加剧,有争议的样点7、8和24在DCA排序图上也倾向于群落Ⅲ.4种硅藻指数都是显著相关的,但IBD、IPS、IDG在硅藻群落的箱型图中明显呈现出合理的趋势.以上研究表明,划分的硅藻群落较好地反映了贺江流域的生态质量,IBD、IPS、IDG适合于贺江流域生物监测与评价.  相似文献   

4.
5.
为了解珠江流域东江干流水体叶绿素a的时空分布及与环境因子的关系,于2012年6月(丰水期)和12月(枯水期)对东江干流进行采样调查分析.结果表明,东江水体叶绿素a含量具有明显的时空分布特征,其全年变化范围为0.84~14.93μg/L,整体均值为3.60±2.45μg/L,丰水期叶绿素a含量显著高于枯水期;而丰、枯水期叶绿素a含量空间分布特征相似,上游河段显著低于下游河段.相关性与主成分分析结果显示,水体中总氮浓度、总磷浓度、有机物含量、水温和水流流速等都是影响东江浮游植物生长的重要因素,其中以总磷的影响最为显著,表明磷可能是东江浮游植物生长的限制因子.  相似文献   

6.
《水文研究》2017,31(6):1283-1292
Flooding in the Mississippi basin has become increasingly uncertain, and a succession of progressively higher, peak annual water levels is observed at many sites. Many record levels set in the central USA by the huge 1993 flood have already been superseded. Methodology developed elsewhere that recognizes trends of river stages is used to estimate present‐day flood risk at 27 sites in the Mississippi basin that have >100 years of continuous stage record. Unlike official estimates that are fundamentally based on discharge, this methodology requires only data on river stage. A novel plot linearizes the official flood levels that are indirectly derived from the complex, discharge‐based calculations and demonstrates that the neglect of trends has resulted in the effective use of undersized means and standard deviations in flood risk analysis. A severe consequence is that official “base flood” levels are underestimated by 0.4 to 2 m at many sites in the central USA.  相似文献   

7.
珠江三角洲未来几年地震危险性分析   总被引:1,自引:1,他引:1  
杨马陵 《华南地震》2001,21(4):14-21
在分析珠江三角洲地区历史、现今地震活动性和前兆观测资料后认为,今后几年该区将处于地震活动水平较低的平静时段,陆地区域发生MS5级以上地震的可能性很小.未来地震的可能性将主要来自陆地4级地震、周边地区和近海海域5级地震.  相似文献   

8.
Projecting changes in the frequency and intensity of future precipitation and flooding is critical for the development of social infrastructure under climate change. The Mekong River is among the world's large-scale rivers severely affected by climate change. This study aims to define the duration of precipitation contributing to peak floods based on its correlation with peak discharge and inundation volume in the Lower Mekong Basin (LMB). We assessed the changes in precipitation and flood frequency using a large ensemble Database for Policy Decision-Making for Future Climate Change (d4PDF). River discharge in the Mekong River Basin (MRB) and flood inundation in the LMB were simulated by a coupled rainfall-runoff and inundation (RRI) model. Results indicated that 90-day precipitation counting backward from the day of peak flooding had the highest correlation with peak discharge (R2 = .81) and inundation volume (R2 = .81). The ensemble mean of present simulation of d4PDF (1951–2010) showed good agreement with observed extreme flood events in the LMB. The probability density of 90-day precipitation shifted from the present to future climate experiments with a large variation of mean (from 777 to 900 mm) and SD (from 57 to 96 mm). Different patterns of sea surface temperature significantly influence the variation of precipitation and flood inundation in the LMB in the future (2051–2110). Extreme flood events (50-year, 100-year, and 1,000-year return periods) showed increases in discharge, inundation area, and inundation volume by 25%–40%, 19%–36%, and 23%–37%, respectively.  相似文献   

9.
近50a淮河流域汛期降水日数和强度的分布与变化特征   总被引:2,自引:0,他引:2  
选用1961-2010年淮河流域145个地面气象站的观测资料,分析淮河流域汛期(5-9月)降水的时空变化规律.结果表明:淮河流域汛期降水的空间分布不仅受到地理位置和地形的影响,而且与湿度和风速的空间分布具有较好的相关性;在时间变化上,雨日出现频率有下降的趋势,但暴雨日比重和暴雨日平均降水量均有升高的趋势.淮河流域汛期暴雨日出现频率以及各类型雨日的平均降水量均有上升的趋势,强降水时空变化呈现局地性和频发性.  相似文献   

10.
珠江口盆地深部基底地层的地震时深转换研究   总被引:1,自引:0,他引:1       下载免费PDF全文
盆地深部基底的地震解释需要时深尺.而钻遇基底的探井通常很少且仅揭示基底顶部,致使常规VSP时深转换曲线难以达到基底研究所涉及的深度.为此本文提出深部下延段校正的VSP时深转换方法,即用深井和钻遇基底井VSP数据与深反射地震、双船折射地震和重磁数据在深部下延段选取控制点的时深数据,重新拟合时深转换的二次多项式,使其可用于深部地震解释.将珠江口盆地分为深水区(>300 m)和浅水区(<300 m)分别进行水深修正时深拟合.用克里金法对两区同一基准面的等深线进行插值,最终完成全区的时深转换,并藉此编制出全区基底顶面埋深图.  相似文献   

11.
淮河具有行蓄洪区河系洪水预报水力学模型研究   总被引:5,自引:0,他引:5  
针对淮河流域河系特点,建立淮河具有行蓄洪区河系洪水预报模型.干流河道洪水演进采用一维水动力学模型,钐岗分流量利用分流曲线法推求,利用虚拟线性水库法解决大洪水时支流洪水受干流顶托作用,临淮岗闸作为水力学模型的内边界条件进行处理,利用分流比法概化行洪过程,行洪区内只有蓄满时,才会有出流,行洪区内的洪水利用Muskingum...  相似文献   

12.
Conventional flood frequency analysis is concerned with providing an unbiased estimate of the magnitude of the design flow exceeded with the probabilityp, but sampling uncertainties imply that such estimates will, on average, be exceeded more frequently. An alternative approach is therefore, to derive an estimator which gives an unbiased estimate of flow risk: the difference between the two magnitudes reflects uncertainties in parameter estimation. An empirical procedure has been developed to estimate the mean true exceedance probabilities of conventional estimates made using a GEV distribution fitted by probability weighted moments, and adjustment factors have been determined to enable the estimation of flood magnitudes exceeded with, on average, the desired probability.  相似文献   

13.
In this paper, precipitation concentrations across the Pearl River basin and the associated spatial patterns are analyzed based on daily precipitation data of 42 rain gauging stations during the period 1960–2005. Regions characterized by the different changing properties of precipitation concentration index (CI) are identified. The southwest and northeast parts of the Pearl River basin are characterized by lower and decreasing precipitation CI; the northwest and south parts of the study river basin show higher and increasing precipitation CI. Higher but decreasing precipitations CI are found in the West and East River basin. Comparison of precipitation CI trends before and after 1990 shows that most parts of the Pearl River basin are characterized by increasing precipitation CI after 1990. Decreasing precipitation CI after 1990 (compared to precipitation CI changes before 1990) is observed only in a few stations located in the lower Gui River and the lower Yu River. Significant increasing precipitation CI after 1990 is detected in the West River, lower North River and upper Beipan River. These changes of precipitation CI in the Pearl River basin are likely to be associated with the consequences of the well-evidenced global warming. These findings can contribute to basin-scale water resource management and conservation of ecological environment in the Pearl River basin.  相似文献   

14.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

15.
The alterations of the water level across the Pearl River Delta (PRD) were investigated using a ‘range of variability approach’ (RVA) based on monthly water level datasets extracted from 17 gauging stations. A mapping method was used to illustrate the spatial patterns in the degrees of alteration of water levels. The results indicated that more stations showing moderate and high alterations in monthly mean maximum and minimum water levels when compared with monthly maximum and minimum water levels. River channels characterized by higher alterations of water levels were observed mainly in the regions north of 22° 30′N. Alterations of water levels across the PRD were a consequence of various influencing factors. However, changed hypsography due to extensive and intensive human activities, particularly the large‐scale dredging and excavation of the river sand, may be taken as one of the major causes for the substantial hydrologic alteration. This study indicated that the river channels characterized by altered water levels are mostly those characterized by highly and moderately intensive sand dredging. The changed ratio of the streamflow between Makou and Sanshui stations, the major upstream flow control stations, also influenced the water level alterations of the Pearl River delta. The results of this study will be of great significance in water resources management and better human mitigation of the natural hazards due to the altered water level under the changing environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper studies the coherent modes of multi‐scale variability of precipitation over the headwater catchments in the Pearl River basin in South China. Long‐term (1952–2000) daily precipitation data spatially averaged for 16 catchments in the basin are studied. Wavelet transform analysis is performed to capture the fluctuation embedded in the time series at different temporal timescales ranging from 6 days to 8.4 years. The catchment clusters of the coherent modes are delineated using the principal component analysis on the wavelet spectra of precipitation. The results suggest that as much as 98% of the precipitation variability is explained by only two coherent modes: high small‐scale mode and high seasonal mode. The results also indicate that a large majority of the catchments (i.e., 15 out of 16) exhibit consistent mode feature on multi‐scale variability throughout three sub‐periods studied (1952–1968, 1969–1984, and 1985–2000). The underlying effects of the coherent modes on the regional flood and drought tendency are also discussed.  相似文献   

17.
Abstract

The Easter 1998 flood was the largest flood event in the gauged record of many basins of the English Midlands. Flood frequency analysis, using such gauged records only, placed the 1998 event at a return period of over 100 years on several basins. However a review of historical (pre-gauged) flooding on some rivers gives a different perspective. Examples are given of the use of historical flood information on the River Leam, the River Wreake at Melton Mowbray, the River Sence (tributary to the River Soar) and the River Frome at Stroud. The cost of acquiring such historical flood data is trivial in comparison to gauged data, but the benefits are demonstrated as significant. In particular, historical flood data provide a better basis for risk assessment and planning on flood plains through revised estimates of flood discharge and depth.  相似文献   

18.
The abrupt changes in the streamflow and sediment load at nine hydrological stations of the Pearl River basin were systematically analysed by using the simple two‐phase linear regression scheme and the coherency analysis technique. Possible underlying causes were also discussed. Our study results indicated that abrupt changes in the streamflow occurred mainly in the early 1990s. The change points were followed by significant decreasing streamflow. Multiscale abrupt behaviour of the sediment load classified the hydrological stations into two groups: (1) Xiaolongtan, Nanning and Liuzhou; and (2) Qianjiang, Dahuangjiangkou, Wuzhou, Gaoyao, Shijiao and Boluo. The grouped categories implied obvious influences of water reservoirs on the hydrological processes of the Pearl River. On the basis of analysis of the locations and the construction time of the water reservoirs, and also the time when the change points occurred, we figured out different ways the water reservoirs impacted the hydrological processes within the Pearl River basin. As for the hydrological variation along the mainstream of the Pearl River, the water reservoirs have considerable influences on both the streamflow and sediment load variations; however, more influences seemed to be exerted on the sediment load transport. In the North River, the hydrological processes seemed to be influenced mainly by climate changes. In the East River, the hydrological variations tended to be impacted by the water reservoirs. The study results also indicated no fixed modes when we address the influences of water reservoirs on hydrological processes. Drainage area and regulation behaviour of the water reservoirs should be taken into account. The results of this study will be of considerable importance for the effective water resources management of the Pearl River basin under the changing environment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Magnetic parameters and their environmental implications of sediments in a core (PD) from the Pearl River Delta, South China, indicate that ferrimagnetic minerals with low coercivity, such as magnetite, dominate the magnetic properties although small amounts of Fe-sulphides occur. The fraction of Fe-sulphides increases and becomes the dominant minerals determining the magnetic characteristics in grey-black organic-rich clay horizons, indicating an anoxic, sulphate-reducing swamp environment resulting from a marine regression. In the "Huaban clay" , hard magnetic minerals, such as hematite and goethite, largely control the magnetic properties of the sediments and imply a long period of exposure and weathering. Where magnetite is the main magnetic mineral, its fraction and grain size determine properties such as magnetic susceptibility (κ ) and saturation isothermal remanent magnetization (SIRM). Ratios of SIRM/κ and χarm/SIRM reflect changes in sea level with high SIRM/κ and χarm/SIRM correlating with a smaller magnetic mineral grain size and rising sea level. Based on downcore variations of these environmental magnetic parameters along with sediment characteristics and microfauna, the sedimentary environment of the Pearl River Delta area can be divided into two main cycles of transgression and regression during the late Pleistocene and Holocene with more sub-cycles of sea level fluctuation during each transgression.  相似文献   

20.
ABSTRACT

Recently, the land surface in the Haihe River basin has changed, influencing the flood processes in the basin. To quantify this impact, seven typical sub-catchments were selected from different hydrological regions of the Haihe River basin for study. The non-parametric Mann-Kendall test was used to analyse for trends, and the non-parametric Pettitt test was adopted to detect any change point in the flood time series. Then, a hydrological model was established to simulate the effects of each potential driving factor on flood peak and volume. It was shown that flood peak and volume time series had decreased significantly, and the change point was around the year 1980. Groundwater depletion was not the main contribution to flood peak (FP) and volume (FV) decrease. In the Shifokou, Mubi and Lengkou sub-catchments, small hydraulic structures are the main driving factors for FP and FV decreasing. In the Xitaiyu, Daomaguan and Fuping sub-catchments, both land-use change and hydraulic structures are the main driving factors. The decreasing percentage decreases with the increase of the flood magnitude. The results provide valuable information for flood simulation and control in the Haihe River basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号