首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Seasonal and annual trends of changes in rainfall, rainy days, heaviest rain and relative humidity have been studied over the last century for nine different river basins in northwest and central India. The majority of river basins have shown increasing trends both in annual rainfall and relative humidity. The magnitude of increased rainfall for considered river basins varied from 2–19% of mean per 100 years. The maximum increase in rainfall is observed in the Indus (lower) followed by the Tapi river basin. Seasonal analysis shows maximum increase in rainfall in the post‐monsoon season followed by the pre‐monsoon season. There were least variations in the monsoon rainfall during the last century and winter rainfall has shown a decreasing trend. Most of the river basins have experienced decreasing trends in annual rainy days with a maximum decrease in the Mahanadi basin. The heaviest rain of the year has increased from 9–27 mm per 100 years over different river basins with a maximum of 27 mm for the Brahamani and Subaranrekha river basins. A combination of increase in heaviest rainfall and reduction in the number of rainy days suggest the possibility of increasing severity of floods. Such information is useful in the planning, development and management of water resources in the study area. Further, the majority of river basins have also experienced an increasing trend in relative humidity both on seasonal and annual scales. An increase in annual mean relative humidity for six river basins has been found in the range of 1–18% of mean per 100 years, while a decrease for three river basins from ? 1 to ? 13% of mean per 100 years was observed, providing a net increase in the study area by 2·4% of mean per 100 years. It is understood that an increase in areal extent of vegetation cover as well as rainfall over the last century has increased the moisture in the atmosphere through enhanced evapotranspiration, which in turn has increased the relative humidity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Spatiotemporal trends in precipitation may influence vegetation restoration, and extreme precipitation events profoundly affect soil erosion processes on the Loess Plateau. Daily data collected at 89 meteorological stations in the area between 1957 and 2009 were used to analyze the spatiotemporal trends of precipitation on the Loess Plateau and the return periods of different types of precipitation events classified in the study. Nonparametric methods were employed for temporal analysis, and the Kriging interpolation method was employed for spatial analysis. The results indicate a small decrease in precipitation over the Loess Plateau in last 53 years (although a Mann–Kendall test did not show this decrease to be significant), a southward shift in precipitation isohyets, a slightly delayed rainy season, and prolonged return periods, especially for rainstorm and heavy rainstorm events. Regional responses to global climate change have varied greatly. A slightly increasing trend in precipitation in annual and sub‐annual series, with no obvious shift of isohyets, and an evident decreasing trend in extreme precipitation events were detected in the northwest. In the southeast, correspondingly, a more seriously decreasing trend occurred, with clear shifts of isohyets and a slightly decreasing trend in extreme precipitation events. The result suggests that a negative trend in annual precipitation may have led to decreased soil erosion but an increase in sediment yield during several extreme events. These changes in the precipitation over the Loess Plateau should be noted, and countermeasures should be taken to reduce their adverse impacts on the sustainable development of the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In semi‐arid Kenya, episodes of agricultural droughts of varying severity and duration occur. The occurrence of these agricultural droughts is associated with seasonal rainfall variability and can be reflected by seasonal soil moisture deficits that significantly affect crop performance and yield. The objective of this study was to stochastically simulate the behaviour of dry and wet spells and rainfall amounts in Iiuni watershed, Kenya. The stochastic behaviour of the longest dry and wet spells (runs) and largest rainfall amounts were simulated using a Markov (order 1) model. There were eight raingauge stations within the watershed. The entire analysis was carried out using probability parameters, i.e. mean, variance, simple and conditional probabilities of dry and rain days. An analysis of variance test (ANOVA ) was used to establish significant differences in rainfall characteristics between the eight stations. An analysis of the number of rain days and rainfall amount per rain day was done on a monthly basis to establish the distribution and reliability of seasonal rainfall. The graphic comparison of simulated cumulative distribution functions (Cdfs) of the longest spells and largest rainfall amounts showed Markovian dependence or persistence. The longest dry spells could extend to 24 days in the long rainy season and 12 in the short rainy season. At 50% (median) probability level, the largest rainfall amounts were 91 mm for the long rainy season and 136 mm for the short rainy season. The short rains were more reliable for crop production than the long rains. The Markov model performed well and gave adequate simulations of the spells and rainfall amounts under semi‐arid conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Sea level extremes and their temporal variability have been explored based on the hourly measurements at Marseille tide gauge for the period 1885–2008. A careful quality check has first been applied to the observations to ensure consistency of the record by eliminating outliers and datum shifts. Yearly percentiles have been used to investigate long-term trends of extremes revealing that secular variations in extremes are linked to mean sea level changes. The associated decadal changes show discrepancies between mean sea level trend and extreme fluctuations, due to the influence of the atmospheric forcing. A local regression model based on the generalized Pareto distribution has been applied to derive trends in return levels. The 50-years return levels reach values between 80 and 120 cm. The most significant changes in return levels are characterized by an increase since the 1970s.  相似文献   

5.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式,对中国地区1978-2000年及IPCC A1B情景下2038-2070年气候分别进行了水平分辨率为50 km的模拟试验.文章首先检验了模式模拟的当代极端气候结果,在此基础上对6个极端温度指数和6个极端降水指数的未来变化进行了预估.检验结果表明:MM5V3模式对中国地区当代日最高、最低温度及强降水(大雨和暴雨)日数的空间分布和概率特征均具有一定的模拟能力,但模拟的日最高温度在大部分地区偏低,日最低温度在南方地区偏低、西北地区偏高.概率统计结果显示日最高温度向低值频段偏移,日最低温度在0℃的峰值附近明显偏高.模式对大雨和暴雨年平均日数的模拟在东部地区偏多,概率统计结果则为一致偏大.未来中国地区极端气候预估结果表明:极端高温、极端低温和相对高温在全国范围内都将升高,且线性趋势均为上升;霜日日数则为减少,并具有下降趋势;暖日日数和相对低温在青藏高原和新疆部分地区有所减少、其它地区均为增加,且线性趋势暖日日数为上升,相对低温不明显.极端降水指数的变化具有区域特征,其中单日最大降水、连续五日最大降水、最长无雨期、强降水日数、简单降水强度和极端降水总量均在江淮、华南及西南地区有所增多,而在东北及内蒙古地区有所减少,未来中国南方地区降水的极端化趋势将更加显著.极端降水指数的线性趋势除最长无雨期外其它均为上升.  相似文献   

6.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

7.
We compared the interannual variability of annual daily maximum and minimum extreme water levels in Lake Ontario and the St Lawrence River (Sorel station) from 1918 to 2010, using several statistical tests. The interannual variability of annual daily maximum extreme water levels in Lake Ontario is characterized by a positive long‐term trend showing two shifts in mean (1929–1930 and 1942–1943) and a single shift in variance (in 1958–1959). In contrast, for the St Lawrence River, this interannual variability is characterized by a negative long‐term trend with a single shift in mean, which occurred in 1955–1956. As for annual daily minimum extreme water levels, their interannual variability shows no significant long‐term change in trend. However, for Lake Ontario, the interannual variability of these water levels shows two shifts in mean, which are synchronous with those for maximum water levels, and a single shift in variance, which occurred in 1965–1966. These changes in trend and stationarity (mean and variance) are thought to be due to factors both climatic (the Great Drought of the 1930s) and human (digging of the Seaway and construction of several dams and locks during the 1950s). Despite this change in means and variance, the four series are clearly described by the generalized extreme value distribution. Finally, annual daily maximum and minimum extreme water levels in the St Lawrence and Lake Ontario are negatively correlated with Atlantic multidecadal oscillation over the period from 1918 to 2010. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Trends of the three hydro-meteorological variables precipitation, temperature and stream flow, represented by 13, 12, and 9 gauging stations, respectively, within the Abay/Upper Blue Nile basin have been studied to support water management in the region. The Trends were evaluated over different time periods depending on data availability at the stations. The statistical Mann–Kendall and Pettitt tests have been used to assess trends and change points respectively. The tests have been applied to mean annual, monthly, seasonal, 1- and 7-days annual minimum and maximum values for streamflow, while mean annual, monthly and seasonal timescales were applied to meteorological variables. The results are heterogeneous and depict statistically significant increasing/decreasing trends. Besides, it showed significant abrupt change of point upward/downward shift for streamflow and temperature time series. However, precipitation time series did not show any statistically significant trends in mean annual and seasonal scales across the examined stations.Increasing trends in temperature at different weather stations for the mean annual, rainy, dry and small rainy seasons are apparent. The mean temperature at Bahir Dar – typical station in the Lake Tana sub basin, has been increasing at the rate of about 0.5 °C/decade, 0.3 °C/decade in rainy season (June–September), 0.6 °C/decade in small rainy season (March–May), and 0.6 °C/decade in dry season (October–February). Other stations in the Abay/Upper Blue Nile show comparable results. Overall it is found that trends and change point times varied considerably across the stations and catchment to catchment. Identified significant trends can help to make better planning decisions for water management. However, the cause attributes to the observed changes in hydro-meteorological variables need further research. In particular the combined effects of land use/land cover change and climate variability on streamflow of Abay/Blue Nile basin and its tributaries needs to be understood better.  相似文献   

9.
An investigation was carried out to identify trends in the rainfall and temperature regimes of the Ganga basin in India and in India as a whole. Long-term data on the monsoon and annual rainfall and the average annual temperature for India as a whole, and on the monsoon rainfall, number of rainy days and annual maximum temperature of the Ganga basin were analysed. The trends in these data were detected using non-parametric methods. The results of this study showed that the rainfall variables had a decreasing trend and the temperature had an increasing trend. These trends were observed to have begun around the second half of the 1960s, and have implications for the Indian economy. As the Indian economy continues to be based on agriculture, water resource management for irrigation plays a vital part in its growth. Present methods of design and management for water resource systems assume the climatic regime to be stationary. If indeed the climatic regime has changed, it will be necessary to develop new management approaches which consider this change.  相似文献   

10.
Using Lake Superior mean monthly elevations as recorded at five gauges around the lake, time series of elevations and differences in elevations between pairs of gauges were analysed for trends, periodicities and autoregressive components. It was found that the variance of the time series of elevations consisted of 4–12% linear trends, 35–44% periodicities in the mean, 0.23–0.66% periodicities in the variance, a 43–54% autoregressive component and a 5% random component. On the other hand, the time series of differences in lake elevations were found to consist of 30–52% linear trends, 5–35% periodicities in the mean and variance, up to a 30% autoregressive component and a random component of 21–31%. Rates of crustal movement were computed from the trends in gauge differences.  相似文献   

11.
This paper presents the results of an analysis of the daily rainfall of 329 rain gauge stations data over Maharashtra, a state in India, during the summer monsoon season, June to September, for the 11?year period from 1998 to 2008. Mesoscale analysis of the daily rainfall data is performed by converting the station rainfall data into gridded format with 15?km resolution. Various statistics have been carried out over 35 districts of four meteorological subdivisions of the Maharashtra state to understand the spatio-temporal variability of rainfall. Variation of monthly mean rainfall for the four monsoon months and a season as whole is analyzed for different rainfall statistics such as mean rainfall, rainfall variability, rainy days, maximum daily rainfall and classification of rainy days. Seasonal rainfall is maximum over the Konkan region followed by the eastern Vidharbha region whereas Madhya Maharashtra as a rain shadow region receives less rainfall. The rainfall is highly variable over all of Maharashtra with the coefficient of variability of the daily rainfall varying between 100 and 300%. Seasonal distribution of the number of rainy days shows 90–100 over southern Konkan, 80–90 over northern Konkan, 50–60 over eastern Vidharbha, and the southeast Madhya Maharashtra has the lowest number of about 15–20 rainy days. The highest values of maximum daily rainfall are located over the Sindhudurg, Ratnagiri, Raigadh, Mumbai and Thane districts of the Konkan region followed by that over eastern Vidharbha. The rainfall data have been divided into three categories (moderate rainfall, heavy rainfall and extreme heavy rainfall) based upon seven categories used by the India Meteorological Department. Heavy rainfall zones lie over the southern Konkan region, whereas extreme heavy rainfalls occur over northern latitudes. The data used in this study is having high resolution and district wise analysis over Maharashtra state is extremely beneficial.  相似文献   

12.
An entropy-based investigation into the variability of precipitation   总被引:3,自引:0,他引:3  
Employing the entropy concept spatial and temporal variability of precipitation time series were investigated for the State of Texas, USA. Marginal entropy was used to investigate the variability associated with monthly, seasonal and annual time series. Also, apportionment entropy and intensity entropy were used for investigating the intra-annual and decadal distributions of monthly and annual precipitation amounts and numbers of rainy days within a year and decade respectively. Finally, the Hurst exponent and the Mann–Kendall test were used to evaluate the long-term persistence and trend in the variability of precipitation. Distinct spatial patterns in annual series and different seasons were observed. The variability of precipitation amount as well as number of rainy days within a year increased from east to west of Texas. The results also indicated that highly disorderliness in the amount of precipitation and number of rainy days caused severe droughts during the 1950’s in whole of Texas.  相似文献   

13.
Daily rain series from southern Sweden with records dating back to the 1870s have been analysed to investigate the trends of daily and multi‐day precipitation of different return periods with emphasis on the extremes. Probabilities of extreme storms were determined as continuously changing values based on 25 years of data. An extra set of data was used to investigate changes in Skåne, the southernmost peninsula of Sweden. Another 30‐year data set of more than 200 stations of a dense gauge network in Skåne was used to investigate the relation between very large daily rainfall and annual precipitation. The annual precipitation has increased significantly all over southern Sweden due to increased winter precipitation. There is a trend of increasing maximum annual daily precipitation at only one station, where the annual maximum often occurs in winter. The number of events with a short return period is increasing, but the number of more extreme events has not increased. Daily and multi‐daily design storms of long return periods determined from extreme value analysis with updating year by year are not higher today than during the last 100 years. The largest daily storms are not related to stations with annual rainfall but seem to occur randomly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This article characterizes the spatial and temporal current variations, in the subtidal and tidal ranges, during the rainy and dry seasons, at the continental shelf off the Jaguaribe River, through measurements of continuous current field data from an acoustic Doppler current profiler (ADCP) mooring during 124 days, from June 12 to October 14, 2009. To support this dataset, we collected corresponding data from a meteorological station located at the estuary. The spatial variation showed that highest current speeds occur near the coast, with an offset of a NNW coastal jet, decreasing intensity, monotonically, towards offshore up to 0.1 ms?1. In the rainy season, small inversions of the wind field were observed, lasting 2 to 3 days on average and were accompanied by the direction of surface currents only. In the dry season, the period of reversal of wind fields and currents lasted 14 and 35 h, respectively. The analysis of empirical orthogonal functions in rainy and dry seasons showed that the continental shelf is predominantly barotropic, where the second and third modes explained only 7% of the total variance, during the dry season. The tidal currents are more intense in the direction normal to the coast, showing a semidiurnal tidal regime. Energy distribution between tidal currents and currents of longer periods showed that for the component parallel to bathymetry, subtidal frequency currents are dominant, contributing to more than 70% of the variance. For the normal component to the coastline bathymetry, there is a significant increase of power concerning tidal currents, at all depths, so they contribute with about 55% of the total variance.  相似文献   

15.
On the basis of daily precipitation records at 76 meteorological stations in the arid region, northwest of China, the spatial and temporal distribution of mean precipitation and extremes were analysed during 1960–2010. The Mann–Kendall trend test and linear least square method were utilized to detect monotonic trends and magnitudes in annual and seasonal mean precipitation and extremes. The results obtained indicate that both the mean precipitation and the extremes have increased except in consecutive dry days, which showed the opposite trend. The changes in amplitude of both mean precipitation and extremes show seasonal variability. On an annual basis, the number of rain days (R0.1) has significantly increased. Meanwhile, the precipitation intensity as reflected by simple daily intensity index (SDII), number of heavy precipitation days (R10), very wet days (R95p), max 1‐day precipitation amount (RX1day) and max 5‐day precipitation amount (RX5day) has also significantly increased. This suggests that the precipitation increase in the arid region is due to the increase in both precipitation frequency and intensity. Trends in extremes are very highly correlated with mean trends of precipitation. The spatial correlation between trends in extremes and trends in the mean is stronger for winter (DJF) than for annual and other seasons. The regional annual and seasonal precipitation and extremes are observed the step jump in mean in the late 1980s. Overall, the results of this study are good indicators of local climate change, which will definitely enhance human mitigation to natural hazards caused by precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Summary Observations of days with thunderstorm at twelve stations in the Alpine and Pre-Alpine region have been used to look for trends and periodicities in the thunderstorm activity in this area. The annual number of days with thunderstorms was represented by negative binomial distributions, then by means of a non-parametric trend test, parts of the series were found in which the numbers of days with thunderstorm were increasing, decreasing or uniform at the various stations. A variance spectrum analysis showed the existence of long-periodic waves and of short-periodic waves superposed on the background red noise or white noise spectrum. Partitioning the series of observations yielded that these periodicities are not stable.  相似文献   

17.
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

18.
Catchment hydrological responses to precipitation inputs, particularly during exceptionally large storms, are complex and variable, and our understanding of the associated runoff generation processes during those events is limited. Hydrological monitoring of climatically and hydrologically distinct catchments can help to improve this understanding by shedding light on the interplay between antecedent soil moisture conditions, hydrological connectivity, and rainfall event characteristics. This knowledge is urgently needed considering that both the frequency and magnitude of extreme precipitation events are increasing worldwide as a consequence of climate change. In autumn 2018, we installed water level sensors to monitor stream water and near-stream groundwater levels at two Mediterranean forest headwater catchments with contrasting hydrological regimes: Font del Regàs (sub-humid climate, perennial flow regime) and Fuirosos (semi-arid climate, intermittent flow regime). Both catchments are located in northeastern Spain, where the extratropical cyclone Gloria hit in January 2020 and left in ca. 65 h outstanding accumulated rainfalls of 424 mm in Font del Regàs and 230 mm in Fuirosos. During rainfall events of low mean intensity, hydrological responses to precipitation inputs at the semi-arid Fuirosos were more delayed and more variable than at the sub-humid Font del Regàs. We explain these divergences by differences in antecedent soil moisture conditions and associated differences in catchment hydrological connectivity between the two catchments, which in this case are likely driven by differences in local climate rather than by differences in local topography. In contrast, during events of moderate and high mean rainfall intensities, including the storm Gloria, precipitation inputs and hydrological responses correlated similarly in the two catchments. We explain this convergence by rapid development of hydrological connectivity independently of antecedent soil moisture conditions. The data set presented here is unique and contributes to our mechanistic understanding on how streams respond to rainfall events and exceptionally large storms in catchments with contrasting flow regimes.  相似文献   

19.
Abstract

There is increasing concern that flood risk will be exacerbated in Antalya, Turkey as a result of global-warming-induced, more frequent and intensive, heavy rainfalls. In this paper, first, trends in extreme rainfall indices in the Antalya region were analysed using daily rainfall data. All stations in the study area showed statistically significant increasing trends for at least one extreme rainfall index. Extreme rainfall datasets for current (1970–1989) and future periods (2080–2099) were then constructed for frequency analysis using the peaks-over-threshold method. Frequency analysis of extreme rainfall data was performed using generalized Pareto distribution for current and future periods in order to estimate rainfall intensities for various return periods. Rainfall intensities for the future period were found to increase by up to 23% more than the current period. This study contributed to better understanding of climate change effects on extreme rainfalls in Antalya, Turkey.  相似文献   

20.
Abstract

This work investigates historical trends of meteorological drought in Taiwan by means of long-term precipitation records. Information on local climate change over the last century is also presented. Monthly and daily precipitation data for roughly 100 years, collected by 22 weather stations, were used as the study database. Meteorological droughts of different levels of severity are represented by the standardized precipitation index (SPI) at a three-monthly time scale. Additionally, change-point detection is used to identify meteorological drought trends in the SPI series. Results of the analysis indicate that the incidence of meteorological drought has decreased in northeastern Taiwan since around 1960, and increased in central and southern Taiwan. Long-term daily precipitation series show an increasing trend for dry days all over Taiwan. Finally, frequency analysis was performed to obtain further information on trends of return periods of drought characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号