首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Analyses of the spatio-temporal variability of precipitation extremes defined by eleven extreme precipitation indices in Shandong were conducted by utilizing the methods of linear regression, ensemble empirical mode decomposition (EEMD) and Mann–Kendall test. The results revealed that statistically significant decreasing trends existed for almost all extreme precipitation indices except for the consecutive dry days (CDD) and simple daily intensity index. A periodicity of 10–15 years for precipitation extremes is detected by EEMD analysis. Greatest 5-day total rainfall (RX5day), very wet days (R95p) and annual total wet-day precipitation (PRCPTOT) experienced decreasing trends in the region stretching from the southeast coast to the west, while the spatial distribution of the decreasing trends for other indices was more complicated. Moreover, the frequency of occurrence in precipitation extremes at Changdao station, surrounded by the sea in the northeast region, increased in contrast to surrounding stations. This may suggest a possible effect from the local marine environment on extreme precipitation. In addition, the stations with statistically significant positive trends for CDD were mainly located in mid-west Shandong and along the southeast coast, where the extreme precipitation and total rainfall were, on the contrary, characterized by decreasing trends. These results indicate that drought or severe drought events have become more frequent in those regions. Analysis of large-scale atmospheric circulation changes indicates that a strengthening anticyclonic circulation and increasing geopotential height as well as decreasing strength of monsoonal flow in recent decades may have contributed to the variations in extreme precipitation in Shandong.  相似文献   

2.
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

3.
Abstract

Daily precipitation data from 31 Senegalese stations spanning the period from 1950 to 2007 were used to examine the inter-annual variations of seven rainfall indices: the annual mean precipitation (MEAN); the annual standard deviation of daily precipitation (STD); the frequency of wet days (Prcp1); the maximum number of consecutive dry days (CDD); the maximum 3-day rainfall total (R3D); the wet day precipitation intensity (SDII); and the 90th percentile of rain-day precipitation (Prec90p). The indices were spatially averaged over three agro-climatic regions in Senegal. Trends in the time series of the averaged indices were assessed using both visual examination and a modified version of the Mann-Kendall (MM-K) test. Initially negative significant trends in all seven indices suggest gradually drier conditions over the three agro-climatic regions between 1950 and 1980. In contrast, no significant trends, or even positive significant trends, were observed from the mid-1980s to 2007. The MM-K test was applied to all available data (1950–2007) and the period from 1971 to 2000. While several indices were found to have significant trends towards drier conditions for the 1950–2007 period, only PRCP1 showed a positive significant trend for the 1971–2000 period. The MM-K test did not detect a significant trend for the other indices. It was found that the rainfall deficit and therefore drought is no longer intensifying, and that the region may even become wetter. However, the period covered by the observations is still too short to resolve the question of whether there is now a trend towards wetter conditions.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

4.
Much has been written on the subject of objective functions to calibrate rainfall–runoff models. Many studies focus on the best choice for low-flow simulations or different multi-objective purposes. Only a few studies, however, investigate objective functions to optimize the simulations of low-flow indices that are important for water management. Here, we test different objective functions, from single objective functions with different discharge transformations or using low-flow indices, to combinations of single objective functions, and we evaluate their robustness and sensitivity to the rainfall–runoff model. We find that the Kling and Gupta efficiency (KGE) applied to a transformation of discharge is inadequate to fulfil all assessment criteria, whereas the mean of the KGE applied to the discharge and the KGE applied to the inverse of the discharge is sufficient. The robustness depends on the climate variability rather than the objective function and the results are insensitive to the model.
EDITOR A. Castellarin; ASSOCIATE EDITOR C. Perrin  相似文献   

5.
ABSTRACT

In this study, a hybrid factorial stepwise-cluster analysis (HFSA) method is developed for modelling hydrological processes. The HFSA method employs a cluster tree to represent the complex nonlinear relationship between inputs (predictors) and outputs (predictands) in hydrological processes. A real case of streamflow simulation for the Kaidu River basin is applied to demonstrate the efficiency of the HFSA method. After training a total of 24?108 calibration samples, the cluster tree for daily streamflow is generated based on a stepwise-cluster analysis (SCA) approach and is then used to reproduce the daily streamflows for calibration (1995–2005) and validation (2008–2010) periods. The Nash-Sutcliffe coefficients for calibration and validation are 0.68 and 0.65, respectively, and the deviations of volume are 1.68% and 4.11%, respectively. Results show that: (i) the HFSA method can formulate a SCA-based hydrological modelling system for streamflow simulation with a satisfactory fitting; (ii) the variability and peak value of streamflow in the Kaidu River basin can be effectively captured by the SCA-based hydrological modelling system; (iii) results from 26 factorial experiments indicate that not only are minimum temperature and precipitation key drivers of system performance, but also the interaction between precipitation and minimum temperature significantly impacts on the streamflow. The findings are useful in indicating that the streamflow of the study basin is a mixture of snowmelt and rainfall water.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR G. Thirel  相似文献   

6.
This study evaluates changes in streamflow, temperature and precipitation over a time span of 105 years (1906–2010) in the Colorado River Basin (CRB). Monthly precipitation and temperature data for 29 climate divisions, and streamflow data for 29 naturalized gauges were analyzed. Two variations of the Mann-Kendall test, considering lag-1 auto correlation and long-term persistence, and the Pettitt test were employed to assess trends and shifts, respectively. Results indicated that streamflow increased during the winter–spring months and decreased during the summer– autumn period. Decreasing trends in winter precipitation were identified over snow-dominated regions in the upper basin. Significant increases in temperature were detected over several months. Major shifts were noticed in 1964, 1968 and in the late 1920s. Increasing temperature while decreasing streamflow and precipitation were noticed after major shifts in the 1930s, and these shifts coincided with coupled phases of El Niño Southern Oscillation and Pacific Decadal Oscillation.
EDITOR A. Castellarin; ASSOCIATE EDITOR R. Hirsch  相似文献   

7.
ABSTRACT

Estimating river flows at ungauged sites is generally recognised as an important area of research. In countries or regions with rapid land development and sparse hydrological gauging networks, three particular challenges may arise—data scarcity, data quality, and hydrological non-stationarity. Using data from 44 gauged sub-catchments of the upper Ping catchment in northern Thailand from the period 1995–2006, three relevant flow response indices (runoff coefficient, base flow index and seasonal elasticity of flow) were regionalised by regression against available catchment properties. The runoff coefficient was the most successfully regionalised, followed by base flow index and lastly the seasonal elasticity. The non-stationarity (represented by the differences between two 6-year sub-periods) was significant both in the flow response indices and in land use indices; however relationships between the two sets of indices were weak. The regression equations derived from regionalisation were not helpful in predicting the non-stationarity in the flow indices except somewhat for the runoff coefficient. A partly subjective data quality scoring system was devised, and showed the clear influence of rainfall and flow data quality on regionalisation uncertainty. Recommendations towards improving data support for hydrological regionalisation in Thailand include more relevant soils databases, improved records of abstractions and investment in the gauge network. Widening of the regionalisation beyond the upper Ping and renewed efforts at using remotely sensed rainfall data are other possible ways forward.

EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR T. Wagener  相似文献   

8.
Water availability is the primary constraint on the improvement of food security in rural areas in northwestern Cambodia. A 4-year study was carried out in the upper Stung Sreng watershed to assess water resources. Four sub-watersheds with different land cover types, ranging in size from 1.5 to 185 km2, were monitored using dedicated weather stations and rain- and streamgauges. Geophysics and observation boreholes were used to characterize aquifers. Rainwater is mostly split into evapotranspiration (annual mean of 54% rainfall) and streamflow components (49%), because groundwater recharge is low (1%). Thus, rainwater and streamflow are the main sources for irrigation development. Groundwater can be used only in specific locations for low water-demand crops. A total of 186 household ponds and three village-scale dams were built and 31 wells were installed. The household pond was determined to be the best solution for irrigation development because of its simple management.
EDITOR A. Castellarin ASSOCIATE EDITOR M. Piniewski  相似文献   

9.
Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (Østlandet) Norway by applying the Mann–Kendall test and Theil–Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983–2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. Østlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in Østlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration.  相似文献   

10.
Rising in the Andes, the Madeira River drains the southwestern part of the Amazon basin, which is characterized by high geographical, biological and climatic diversity. This study uses daily records to assess the spatio-temporal runoff variability in the Madeira sub-basins. Results show that inter-annual variability of both discharge and rainfall differs between Andean and lowland tributaries. High-flow discharge variability in the Andean tributaries and the Guaporé River is mostly related to sea surface temperature (SST) in the equatorial Pacific in austral summer, while tropical North Atlantic (TNA) SST modulates rainfall and discharge variability in the lowlands. There also is a downward trend in the low-flow discharge of the lowland tributaries which is not observed in the Andes. Because low-flow discharge values at most lowland stations are negatively related to the SST in the tropical North Atlantic, these trends could be explained by the warming of this ocean since the 1970s.
EDITOR A. Castellarin

ASSOCIATE EDITOR A. Viglione  相似文献   

11.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

12.
On the basis of daily precipitation records at 76 meteorological stations in the arid region, northwest of China, the spatial and temporal distribution of mean precipitation and extremes were analysed during 1960–2010. The Mann–Kendall trend test and linear least square method were utilized to detect monotonic trends and magnitudes in annual and seasonal mean precipitation and extremes. The results obtained indicate that both the mean precipitation and the extremes have increased except in consecutive dry days, which showed the opposite trend. The changes in amplitude of both mean precipitation and extremes show seasonal variability. On an annual basis, the number of rain days (R0.1) has significantly increased. Meanwhile, the precipitation intensity as reflected by simple daily intensity index (SDII), number of heavy precipitation days (R10), very wet days (R95p), max 1‐day precipitation amount (RX1day) and max 5‐day precipitation amount (RX5day) has also significantly increased. This suggests that the precipitation increase in the arid region is due to the increase in both precipitation frequency and intensity. Trends in extremes are very highly correlated with mean trends of precipitation. The spatial correlation between trends in extremes and trends in the mean is stronger for winter (DJF) than for annual and other seasons. The regional annual and seasonal precipitation and extremes are observed the step jump in mean in the late 1980s. Overall, the results of this study are good indicators of local climate change, which will definitely enhance human mitigation to natural hazards caused by precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Streamflow variability in the Upper and Lower Litani basin, Lebanon was modelled as there is a lack of long-term measured runoff data. To simulate runoff and streamflow, daily rainfall was derived using a stochastic rainfall generation model and monthly rainfall data. Two distinct synthetic rainfall models were developed based on a two-part probabilistic distribution approach. The rainfall occurrence was described by a Markov chain process, while the rainfall distribution on wet days was represented by two different distributions (i.e. gamma and mixed exponential distributions). Both distributions yielded similar results. The rainfall data were then processed using water balance and routing models to generate daily and monthly streamflow. Compared with measured data, the model results were generally reasonable (mean errors ranging from 0.1 to 0.8?m3/s at select locations). Finally, the simulated monthly streamflow data were used to investigate discharge trends in the Litani basin during the 20th century using the Mann-Kendall and Sen slope nonparametric trend detection methods. A significant drying trend of the basin was detected, reaching a streamflow reduction of 0.8 and 0.7 m3/s per decade in January for the Upper and Lower basin, respectively.

Editor D. Koutsoyiannis; Associate editor Sheng Yue

Citation Ramadan, H.H., Beighley, R.E., and Ramamurthy, A.S., 2012. Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 57 (8), 1516–1529.  相似文献   

14.
ABSTRACT

This review article discusses the climate, water resources and historical droughts of Africa, drought indices, vulnerability, impact of global warming and land use for drought-prone regions in West, southern and the Greater Horn of Africa, which have suffered recurrent severe droughts in the past. Recent studies detected warming and drying trends in Africa since the mid 20th century. Based on the Fourth Assessment Report of the Intergovernmental Panel on Climate Change and the Coupled Model Intercomparison Project Phase 5 (CMIP5), both northern and southern Africa are projected to experience drying, such as decreasing precipitation, runoff and soil moisture in the 21st century and could become more vulnerable to the impact of droughts. The daily maximum temperature is projected to increase by up to 8°C (RCP8.5 of CMIP5), precipitation indices such as total wet day precipitation (PRCPTOT) and heavy precipitation days (R10 mm) could decrease, while warm spell duration (WSDI) and consecutive dry days (CDD) could increase. Uncertainties of the above long-term projections, teleconnections to climate anomalies such as ENSO and the Madden-Julian Oscillation, which could also affect the water resources of Africa, and capacity building in terms of physical infrastructure and non-structural solutions are also discussed. Given that traditional climate and hydrological data observed in Africa are generally limited, satellite data should also be exploited to fill the data gap for Africa in the future.
Editor D. Koutsoyiannis; Associate editor N. Ilich  相似文献   

15.
Abstract

The spatio-temporal variability of daily precipitation series was investigated in a semiarid region of central Macedonia in northern Greece, Ten years of daily rainfall records for seven stations in the region constituted the data base. The spatial characteristics were examined by drawing composite correlation diagrams for the cool (October-March) season and the warm (April-September) season, and the results confirmed the regional homogeneity of the data sets. Furthermore, the temporal analysis indicated that the non-rainy days constituted the major portion of days throughout the year at all the stations. Similarly, light rainfall represented the majority of rainy days. Moreover, the annual rainfall variation showed high values in March, April and November with low values occurring in the summer and autumn. A sharp increase of rainfall between the 185th and the 195th day of the year must be taken into account when the harvest is scheduled. Harmonic and Power Spectrum analyses applied to the annual variation of rain depths using 5-day intervals revealed significant periodicities of 26, 122, 365 and 55 days. Finally the analysis of the annual variation of rain occurrences. revealed periodicities of 365 and 122 days.  相似文献   

16.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

17.
This study examined trends and change points in 100-year annual and seasonal rainfall over hot and cold arid regions of India. Using k-means clustering, 32 stations were classified into two clusters: the coefficient of variation for annual and seasonal rainfall was relatively high for Cluster-II compared to Cluster-I. Short-term and long-term persistence was more dominant in Cluster-II (entirely arid) and Cluster-I (partly arid), respectively. Trend tests revealed prominent increasing trends in annual and wet season rainfall of Cluster-II. Dry season rainfall increased by 1.09 mm year?1 in the cold arid region. The significant change points in annual and wet season rainfall mostly occurred in the period 1941–1955 (hot and cold), and in the dry season in the period 1973–1975 (hot arid) and in 1949 (cold arid). The findings are useful for managing a surplus or deficiency of rainwater in the Indian arid region.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Kanae  相似文献   

18.
Abstract

Trends in high and low flows are valuable indicators of hydrological change because they highlight changes in various parts of the frequency distribution of streamflow series. This enables improved assessment of water availability in regions with high seasonal and inter-annual variability. There has been a substantial reduction in water resources in the Duero basin (Iberian Peninsula, Spain) and other areas of the Mediterranean region during the last 50 years, and this is likely to continue because of climate change. In this study, we investigated the evolution and trends in high and low flows in the Spanish part of the Duero basin, and in equivalent or closely-related precipitation indices for the period 1961–2005. The results showed a general trend of decrease in the frequency and magnitude of high flows throughout most of the basin. Moreover, the number of days with low flows significantly increased over this period. No clear relationship was evident between the evolution of high/low flows and changes in the distribution frequencies of the precipitation series. In contrast to what was expected, the number of days with heavy precipitation and the mean annual precipitation did not show significant trends across the basin, and the number of days without rainfall decreased slightly. The divergence between precipitation and runoff evolution was more accentuated in spring and summer. In the absence of trends in precipitation, it is possible that reforestation processes in the region, and increasing temperatures in recent decades, could be related to the decreasing frequency of high flows and the increasing frequency of low flows.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Morán-Tejeda, E., López-Moreno, J.I., Vicente-Serrano, S.M., Lorenzo-Lacruz, J. and Ceballos-Barbancho, A., 2012. The contrasted evolution of high and low flows and precipitation indices in the Duero basin (Spain). Hydrological Sciences Journal, 57 (4), 591–611.  相似文献   

19.
ABSTRACT

Assessment of forecast precipitation is required before it can be used as input to hydrological models. Using radar observations in southeastern Australia, forecast rainfall from the Australian Community Climate Earth-System Simulator (ACCESS) was evaluated for 2010 and 2011. Radar rain intensities were first calibrated to gauge rainfall data from four research rainfall stations at hourly time steps. It is shown that the Australian ACCESS model (ACCESS-A) overestimated rainfall in low precipitation areas and underestimated elevated accumulations in high rainfall areas. The forecast errors were found to be dependent on the rainfall magnitude. Since the cumulative rainfall observations varied across the area and through the year, the relative error (RE) in the forecasts varied considerably with space and time, such that there was no consistent bias across the study area. Moreover, further analysis indicated that both location and magnitude errors were the main sources of forecast uncertainties on hourly accumulations, while magnitude was the dominant error on the daily time scale. Consequently, the precipitation output from ACCESS-A may not be useful for direct application in hydrological modelling, and pre-processing approaches such as bias correction or exceedance probability correction will likely be necessary for application of the numerical weather prediction (NWP) outputs.
EDITOR M.C. Acreman ASSOCIATE EDITOR A. Viglione  相似文献   

20.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号