首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
2.
A combination of statistical hypothesis testing methods (Mann-Whitney, Mann-Kendall and Spearman’s rho) and visual exploratory analysis were used to investigate trends in Irish 7-day sustained low-flow (7SLF) series possibly driven by changes in summer rainfall patterns. River flow data from 33 gauging stations covering most major Irish rivers were analysed, after excluding catchments where low flows are influenced by significant human interventions. A statistically significant increasing trend in the 7SLF series was identified by all three tests at eight gauging stations; in contrast, a statistically significant decreasing trend was identified by all three tests at four stations. The stations with increasing trends are mainly located within the western half of the country, while there is no particular spatial clustering of the stations showing a decreasing trend. Further analysis suggests that the increasing trend in the 7SLF time series persists regardless of the starting year of analysis. However, the decreasing trend occurs only when years prior to 1970 are included in the analysis, and disappears, or is reversed, if only the data from 1970 and onwards are considered. There is strong evidence that the direction of the trends in the 7SLF series is determined mainly by trends in total summer rainfall amounts, i.e. is linked to weather.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR not assigned  相似文献   

3.
This study is about use of spatially distributed rain in physically based hydrological models. In recent years, spatially distributed radar rainfall data have become available. The distributed radar rain is used to precisely model hydrologic processes and it is more realistic than the past practice of distribution methods like Thiessen polygons. Radar provides a highly accurate spatial distribution of rainfall and greatly improves the basin average rainfall estimates. However, quantification of the exact amount of rainfall from radar observation is relatively difficult. Thus, the fundamental idea of this study is to apply hourly gauge and radar rainfall data in a distributed hydrological model to simulate hydrological parameters. Hence the comparison is made between the outcomes of the WetSpa model from radar rainfall distribution and gauge rainfall distributed by the Thiessen polygon technique. The comparative plots of the hydrograph and the results of hydrological components such as evapotranspiration, surface runoff, soil moisture, recharge and interflow, reflect the spatially distributed radar input performing well for model outflow simulation.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR F. Pappenberger  相似文献   

4.
Joy Sanyal 《水文科学杂志》2017,62(9):1483-1498
Levees are not usually built to a uniform height due to the varying priority of protecting urban and agricultural lands and they are often maintained in segments. Ad hoc alteration of the heights of these segments may aggravate flood conditions. Alterations lead to complex feedback loops in velocity and depth of water that are difficult to predict. A large number of possible configurations of the levee segments renders a deterministic modelling approach ineffective. The current analysis, based on a two-dimensional hydrodynamic model involving 1000 Monte Carlo realizations of randomly varying levee heights in segments, presents a methodology of dealing with the effect of uncertainty in levee heights on the inundation pattern in a probabilistic framework. Spatially distributed model outcomes include the likelihood of inundation, range and standard deviation of flood depths and maximum speed of water. The results indicate the necessity of adopting a probabilistic approach for robust flood hazard assessment when dealing with levee segments with uncertain heights.

EDITOR M.C. Acreman; ASSOCIATE EDITOR H. Kreibich  相似文献   

5.
Quantifying the relative contributions of different factors to runoff change is helpful for basin management, especially in the context of climate change and anthropogenic activities. The effect of snow change on runoff is seldom evaluated. We attribute the runoff change in the Heihe Upstream Basin (HUB), an alpine basin in China, using two approaches: a snowmelt-based water balance model and the Budyko framework. Results from these approaches show good consistency. Precipitation accounts for 58% of the increasing runoff. The contribution of land-cover change seems unremarkable for the HUB as a whole, where land-cover change has a major effect on runoff in each sub-basin, but its positive effect on increasing runoff in sub-basins 1 and 3 is offset by the negative effect in sub-basin 2. Snow change plays an essential role in each sub-basin, with a contribution rate of around 30%. The impact of potential evapotranspiration is almost negligible.

EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   

6.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.

EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae  相似文献   

7.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

8.
Assessing water resources is an important issue, especially in the context of climatic changes. Although numerous hydrological models exist, new approaches are still under investigation. In this context, we propose a modelling approach based on the physical principle of least action. We present new hypotheses to develop the model further, to widen its application. The improved version of the model MODHYPMA was applied on 20 sub-catchments in Africa and the USA. Its performance was compared with two well-known lumped conceptual models, GR4J and HBV. The model could be successfully calibrated and validated. In calibration, GR4J performed better, while other models had similar performance. In validation, MODHYPMA and GR4J performed similarly and better than HBV. The parameter λ has medium sensitivity while parameters λ and TX have low sensitivity. The parameter uncertainty for MODHYPMA, analysed using the GLUE methodology, was higher during high flows but with good p and r factors.

EDITOR D. Koutsoyiannis ASSOCIATE EDITOR not assigned  相似文献   

9.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

10.
Abstract

The generation of reliable quantitative precipitation estimations (QPEs) through use of raingauge and radar data is an important issue. This study investigates the impacts of radar QPEs with different densities of raingauge networks on rainfall–runoff processes through a semi-distributed parallel-type linear reservoir rainfall–runoff model. The spatial variation structures of the radar QPE, raingauge QPE and radar-gauge residuals are examined to review the current raingauge network, and a compact raingauge network is identified via the kriging method. An analysis of the large-scale spatial characteristics for use with a hydrological model is applied to investigate the impacts of a raingauge network coupled with radar QPEs on the modelled rainfall–runoff processes. Since the precision in locating the storm centre generally represents how well the large-scale variability is reproduced; the results show not only the contribution of kriging to identify a compact network coupled with radar QPE, but also that spatial characteristics of rainfalls do affect the hydrographs.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Pan, T.-Y., Li, M.-Y., Lin, Y.-J., Chang, T.-J., Lai, J.-S., and Tan, Y.-C., 2014. Sensitivity analysis of the hydrological response of the Gaping River basin to radar-raingauge quantitative precipitation estimates. Hydrological Sciences Journal, 59 (7), 1335–1352. http://dx.doi.org/10.1080/02626667.2014.923969  相似文献   

11.
Abstract

Automatic raingauge data often serve as an important input to hydrological and weather warning operations. They are not only fundamental in quantitative rainfall analysis, but also act as the ground truth in warning operation and forecast validation. Quality control is required before the data can be used quantitatively due to systematic and random errors. Extremely large random errors and unreasonably small or false zero values can hamper effective monitoring of heavy rain. Yet both are difficult to detect in real-time by objective means. In an attempt to address these problems, a rainfall data quality-control scheme based on radar-raingauge co-kriging analysis was developed. The important threshold values required in the data quality control of 60-min raingauge rainfall were determined from a detailed analysis of the distributions of rainfall residuals defined as the arithmetic difference and the logarithm of the ratio between a raingauge measurement and its co-kriging estimate. The scheme has been developed and is in real-time use in Hong Kong, a coastal city of about 1100 km2 area with more than 150 raingauges installed. Geographically, it is located in the subtropics and dominated by heavy convective rainfall in the summer. As a basis of the quality-control scheme, the co-kriging rainfall analysis was shown through a verification exercise to be superior to those obtained by the Barnes analysis and ordinary kriging of raingauge data. The performance of the quality-control algorithm was assessed using selected cases and controlled tests, and was found to be satisfactory, with a high error detection rate for the two targeted types of error. Limitations and operational issues identified during a real-time trial of the quality-control scheme are also discussed.
Citation Yeung, H.Y., Man, C., Chan, S.T., and Seed, A., 2014. Development of an operational rainfall data quality-control scheme based on radar-raingauge co-kriging analysis. Hydrological Sciences Journal, 59 (7), 1285–1299. http://dx.doi.org/10.1080/02626667.2013.839873  相似文献   

12.
ABSTRACT

Spatial variability of rainfall has been recognised as an important factor controlling the hydrological response of catchments. However, gauged daily rainfall data are often available at scattered locations over the catchments. This paper looks into how to capitalise on the spatial structure of radar rainfall data for improving kriging interpolation of limited gauge data over catchments at the 1-km2 grid scale, using for the case study 117 gauged stations within the 128 km × 128 km region of the Mt Stapylton weather radar field (near Brisbane, Australia). Correlograms were developed using a Fast Fourier Transform method on the Gaussianised radar and gauged data. It is observed that the correlograms vary from day to day and display significant anisotropy. For the radar data, locally varying anisotropy (LVA) was examined by developing the correlogram centred on each pixel and for different radial distances. Cross-validation was carried out using the empirical correlogram tables, as well as different fitting strategies of a two-dimensional exponential distribution for both the gauged and the radar data. The results indicate that the correlograms based on the radar data outperform the gauged ones as judged by statistical measures including root mean square error, mean bias, mean absolute bias, mean standard deviation and mean inter-quartile range. While the radar data display significant LVA, it was observed that LVA did not significantly improve the estimates compared with the global anisotropy. This was also confirmed by conditional simulation of 120 rainfields using different options of correlogram development.
EDITOR M.C. Acreman; ASSOCIATE EDITOR Q. Zhang  相似文献   

13.
River temperature models play an increasingly important role in the management of fisheries and aquatic resources. Among river temperature models, forecasting models remain relatively unused compared to water temperature simulation models. However, water temperature forecasting is extremely important for in-season management of fisheries, especially when short-term forecasts (a few days) are required. In this study, forecast and simulation models were applied to the Little Southwest Miramichi River (New Brunswick, Canada), where water temperatures can regularly exceed 25–29°C during summer, necessitating associated fisheries closures. Second- and third-order autoregressive models (AR2, AR3) were calibrated and validated using air temperature as the exogenous variable to predict minimum, mean and maximum daily water temperatures. These models were then used to predict river temperatures in forecast mode (1-, 2- and 3-day forecasts using real-time data) and in simulation mode (using only air temperature as input). The results showed that the models performed better when used to forecast rather than simulate water temperatures. The AR3 model slightly outperformed the AR2 in the forecasting mode, with root mean square errors (RMSE) generally between 0.87°C and 1.58°C. However, in the simulation mode, the AR2 slightly outperformed the AR3 model (1.25°C < RMSE < 1.90°C). One-day forecast models performed the best (RMSE ~ 1°C) and model performance decreased as time lag increased (RMSE close to 1.5°C after 3 days). The study showed that marked improvement in the modelling can be accomplished using forecasting models compared to water temperature simulations, especially for short-term forecasts.

EDITOR M.C. Acreman ASSOCIATE EDITOR S. Huang  相似文献   

14.
Abstract

Radar quantitative precipitation estimates (QPEs) were assessed using reference values established by means of a geostatistical approach. The reference values were estimated from raingauge data using the block kriging technique, and the reference meshes were selected on the basis of the kriging estimation variance. Agreement between radar QPEs and reference rain amounts was shown to increase slightly with the space–time scales. The statistical distributions of the errors were modelled conditionally with respect to several factors using the GAMLSS approach. The conditional bias of the errors presents a complex structure that depends on the space–time scales and the considered geographical sub-domains, while the standard deviation of the errors has a more homogeneous behaviour. The estimation standard deviation of the reference rainfall and the standard deviation of the errors between radar and reference rainfall were found to have the same magnitude, indicating the limitations of the available network in terms of providing accurate reference values for the spatial scales considered (5–100 km2).
Editor D. Koutsoyiannis; Guest editor R.J. Moore

Citation Delrieu, G., Bonnifait, L., Kirstetter, P.-E., and Boudevillain, B., 2013. Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59 (7), 1300–1311. http://dx.doi.org/10.1080/02626667.2013.827337  相似文献   

15.
ABSTRACT

Multisource rainfall products can be used to overcome the absence of gauged precipitation data for hydrological applications. This study aims to evaluate rainfall estimates from the Chinese S-band weather radar (CINRAD-SA), operational raingauges, multiple satellites (CMORPH, ERA-Interim, GPM, TRMM-3B42RT) and the merged satellite–gauge rainfall products, CMORPH-GC, as inputs to a calibrated probability distribution model (PDM) on the Qinhuai River Basin in Nanjing, China. The Qinhuai is a middle-sized catchment with an area of 799 km2. All sources used in this study are capable of recording rainfall at high spatial and temporal resolution (3 h). The discrepancies between satellite and radar data are analysed by statistical comparison with raingauge data. The streamflow simulation results from three flood events suggest that rainfall estimates using CMORPH-GC, TRMM-3B42RT and S-band radar are more accurate than those using the other rainfall sources. These findings indicate the potential to use satellite and radar data as alternatives to raingauge data in hydrological applications for ungauged or poorly gauged basins.  相似文献   

16.
The growth of magnetic field is considered in the stretch–fold–shear map in the limit of weak diffusion. Numerical results are given for insulating, perfectly conducting and periodic boundary conditions. The resulting eigenvalue branches and magnetic fields are related to eigenvalue branches for perfect dynamo action, obtained for zero diffusion using a complex variable formulation.

The effect of diffusion on these perfect dynamo modes depends on their structure, growth rate and the diffusive boundary conditions employed. In some cases, the effect of diffusion is a small perturbation, giving a correction going to zero in the limit of weak diffusion, with a scaling exponent given analytically. In other cases weak diffusion can entirely destroy a perfect dynamo branch. Diffusive boundary layers can also generate entirely new branches.

These different cases are elucidated, and within the framework of the asymptotic approximations used (which do not constitute a rigorous proof), it is seen that for all three boundary conditions employed, the stretch–fold–shear map is a fast dynamo.  相似文献   


17.
18.
Abstract

A semi-distributed model with a parallel connection was applied to examine the effects of urbanization variables. Data were obtained from watershed divisions that were characterized by various degrees of urbanization. The mean rainfall was calculated using the kriging method. The model inputs were obtained by subtracting mean rainfall from Ф-index values, based on the spatially uniform loss assumption. Regression analysis was applied to determine the relationship between the parameters of 64 calibrations and urbanization variables among the divisions. The results showed that overland parameters produced more consistent change in response to imperviousness than to population. Conversely, the channel parameter was unaffected by changes in urbanization. The verification results of 46 cases showed that power linkage was a potential option for linking division parameters with the corresponding imperviousness based on four evaluation criteria. The changes in imperviousness on overland parameters show the hydrological effects of division urbanizations.
Editor D. Koutsoyiannis; Associate editor T. Wagener

Citation Chen, R., Chuang, W.-N., and Cheng, S., 2014. Effects of urbanization variables on model parameters for watershed divisions. Hydrological Sciences Journal, 59 (6), 1167–1183. http://dx.doi.org/10.1080/02626667.2014.910305  相似文献   

19.
20.
Abstract

This article presents a comparison between real-time discharges calculated by a flash-flood warning system and post-event flood peak estimates. The studied event occurred on 15 and 16 June 2010 at the Argens catchment located in the south of France. Real-time flood warnings were provided by the AIGA (Adaptation d’Information Géographique pour l’Alerte en Crue) warning system, which is based on a simple distributed hydrological model run at a 1-km2 resolution using radar rainfall information. The timing of the warnings (updated every 15 min) was compared to the observed flood impacts. Furthermore, “consolidated” flood peaks estimated by an intensive post-event survey were used to evaluate the AIGA-estimated peak discharges. The results indicated that the AIGA warnings clearly identified the most affected areas. However, the effective lead-time of the event detection was short, especially for fast-response catchments, because the current method does not take into account any rainfall forecast. The flood peak analysis showed a relatively good correspondence between AIGA- and field-estimated peak values, although some differences were due to the rainfall underestimation by the radar and rainfall–runoff model limitations.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Javelle, P., Demargne, J., Defrance, D., Pansu, J. and Arnaud, P., 2014. Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, 59 (7), 1390–1402. http://dx.doi.org/10.1080/02626667.2014.923970  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号