首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Based on c. 1500 km reflection seismic profiles, the Quaternary formations and their pre-Quaternary substratum in the southeastern Kattegat are described and a geological interpretation is suggested. The major volume of Quaternary deposits is found in a broad north-northwest south-southeast trending topographic depression. The substratum consists of Upper Cretaceous limestone in the region north of the Sorgenfrei–Tornquist Zone, and inside this zone older Mesozoic sedimentary rocks and Precambrian crystalline rocks are found. The Quaternary is divided into four seismic units. No direct stratigraphic control is available, but the units are assumed to represent a period ranging from Late Saalian to Holocene. The oldest unit (unit 3) is composed of deposits of supposed Late Saalian to Middle Weichselian age. This unit was severely eroded probably by the Late Weichselian ice sheets in a zone extending 40–50 km from the Swedish coast. Unit 2 represents the Late Weichselian till deposits. North and east of the island of Anholt unit 3 is cut by a system of channels eroded by glacial meltwater. By the erosion a relief up to c. 100 m was formed. After the recession of the Late Weichselian ice, an up to 100 m thick sequence of water-lain sediments (unit 1) was deposited in the erosional basin and channels. Holocene deposits (unit 0) of considerable thickness have only been identified in the channels in the northern part of the area.  相似文献   

2.
The 6-m-long British Geological Survey vibrocore 56+01/170 from the Devil's Hole area, central North Sea, comprises glaciomarine and marine sediments of Late Weichselian and Holocene age. Besides the foraminiferal, pollen and AMS 14C data presented in this study, amino acid and ostracod data exist for the core. The accumulation of the sediment in the core began ca. 15.7 14C ka BP on an erosional surface on overconsolidated Saalian sediment. When the lower part of the core (facies 1) accumulated the core area is interpreted to have been around 40 m lower than present. This interpretation is based on two assumptions; first, that the sediment is now ca. 20 m above the global sea level at the time of deposition, and second, that the marine microfaunal content reflects a water depth of about 20 m at that time. Crustal downflexure caused by Late Weichselian glacial loading of the core area is considered as the most plausible explanation of this difference. Glacial overriding would also explain the overconsolidation of the underlying Saalian sediment, the erosional surface on the Saalian sediment and the absence of Weichselian sediment older than ca. 15.7 ka BP at the core site. Indications of a regressional trend, with a minimum age of 12.1 ka BP, support the suggestion that the Devil's Hole area was glaciated during the Weichselian, as the fall in sea-level at that time probably reflects local isostatic rebound.  相似文献   

3.
The marine Quaternary of Vendsyssel has been studied in a series of new boreholes in the area, and the climatic development is discussed on the basis of foraminiferal assemblages and stable isotopes. The foraminiferal zones are correlated with previously published records from northern Denmark, and the spatial local and regional distribution is discussed in details based on the new evidence. The new data show that the marine sedimentation in Vendsyssel was not continuous from the Late Saalian to the Middle Weichselian, as previously thought. For example, there is indication of a hiatus at our key site, Åsted Vest in the central part of Vendsyssel, at the transition between regional foraminiferal zones N4 and N3, i.e. at the Late Saalian (MIS 6) – Eemian (MIS 5e) transition. The hitherto most complete Early Weichselian succession (zone N2) in Vendsyssel is presented from Åsted Vest. Deposits from the Early Weichselian sea‐level lowstands (MIS 5d and 5b) may, however, be missing in parts of the area. Two major breaks in the marine deposition during the Middle Weichselian represent glacial advances into northern Denmark. The first event occurred just after deposition of the regional foraminiferal zone N2 (late MIS 4), and the second event in the middle part of zone N1 (early MIS 3). Zone N1 is succeeded by a series of non‐marine units deposited during the sea‐level lowstand of the Weichselian maximum glaciation (late MIS 3 and MIS 2), including deeply incised tunnel valleys, which have been refilled with non‐marine sediments during the Late Weichselian. Vendsyssel was inundated by the sea again during the Late Weichselian, at c. 18 kyr BP. Subsequently, the marine conditions were gradually changed by forced regression caused by local isostatic uplift, and around the Weichselian–Holocene transition most of Vendsyssel was above sea level. A continuous deposition across the Late Weichselian–Holocene boundary only occurred at relatively deep sites such as Skagen. The environmental and climatic indications for Vendsyssel are in accordance with the global sea‐level curve, and the Quaternary record is correlated with the oxygen isotope record from the NorthGRIP ice core, as well as the marine isotope stages.  相似文献   

4.
The stratigraphic record from a boring penetrating the 104 m thick Quaternary sequence on the island of Anholt is summarized. The spatial distribution of the pre-Quaternary formations and the surface topography of these are described on the basis of reflection seismic profiles. It is concluded that Anholt is located in the crestal zone of a southeast–northwest trending anticline in the pre-Quaternary. The anticline was formed during the Late Cretaceous–Early Tertiary inversion episodes and was later deeply truncated by erosion. A southeast–northwest trending erosional channel, c. 2 km wide and with a maximum depth c. 250 m below sea level, is located southeast of Anholt along the crest of the anticline. This channel is not present at the bore locality. Although no direct correlation from the boring to the seismic profiles could be achieved it is argued that a strong reflection near the base of the Quaternary outside the channel may be correlated with the Saalian–Eemian complex found in the boring. Three younger sequences of probable Early and Middle Weichselian, Late Glacial and Holocene age respectively have been recognized. The Late Glacial and Holocene sediments appear to have been deposited in erosional troughs and channels cut into a sequence of Lower and Middle Weichselian sediments. Post-Eemian till deposits or other evidence unambiguously indicating the presence of Weichselian glaciers have not been found, either in the boring or in the seismic profiles. It is therefore assumed that the erosion of the Lower-Middle Weichselian sequence was of fluvial origin and can be ascribed to the lowstand period of the Weichselian glacial period. The western part of Anholt can possibly be regarded as an erosional remnant of the Lower-Middle Weichselian sequence.  相似文献   

5.
The Hitura open pit exposes a sedimentary sequence up to 50 m thick representing Late Saalian to Holocene glacial and non-glacial sediments. The sequence was investigated using sedimentological methods, OSL-dating and pollen and diatom analyses to reconstruct the Middle Weichselian (MWG) glacial event in the central part of the Scandinavian Ice Sheet (SIS). The results indicate that the sediment succession represents two entire glacial advance and retreat cycles. The lowermost deposits are Late Saalian esker and delta sediments overlain by sediments that correlate with the early Eemian lacustrine phase. Remnants of the Eemian soil post-dating the lacustrine phase were also observed. The area was ice-free during the entire Early Weichselian (EWG). The first glacial advance recorded in the sediments is related to the MWG. It started 79 kyr ago, deformed underlying sediments and deposited an immature till, including large detached sediment pods containing remains of organic material, soils and fluvial sediments representing allochthonous material from EWG ice-free stadials and interstadials. The glacial deposits are conformably overlain by glaciolacustrine and littoral accumulations, indicating MWG deglaciation between 62 and 55 kyr ago. Based on the fabric measurements from the till unit overlying the MWG sediments, ice advance during the Late Weichselian (LWG) was initially from the west and later from a north-northwesterly direction. The Hitura strata provide the first dating of the MWG deglaciation (55 to 62 kyr ago) from central parts of the SIS. It can be considered as a key site for studying the growth and decay of SIS during the poorly known early parts of the glaciation.  相似文献   

6.
Detailed investigations of sediments exposed along river sections in the coastal part of Jameson Land have revealed a Saalian to Holocene glacial history. Eleven sedimentary units have been distinguished. most of which are found in superposition at one single large section. Four subglacially formed till beds are recognized; three of which are of Weichselian age. All the tills are considered to have been deposited at the base of fjord glaciers restricted to the Scoresby Sund basin. The tills are separated by marine, fluvial or deltaic sediments, and demonstrate changes in the depositional environnient considered to represent changes in relative sea level during the ice-free periods. The fossil content. supported by a series of luminescence dates, suggest that most of the succession is of Eemian and Early Weichselian age. From the luminescence dates, a short duration of <10ka is suggested for the Early Weichselian glacial stades. Sedimentation during this period was partly controlled by glacio-isostatic subsidence caused by net growth of the Greenland Ice Sheet. The Middle Weichselian is represented by a large hiatus. whereas the Late Weichselian is represented by a subglacial till.  相似文献   

7.
Using extensive data sets from three separate areas in the German North Sea sector, consisting of seismic grids, cores and in‐situ cone penetration tests (CPT), we have established a revised stratigraphical framework for the mid to late Quaternary deposits of the German North Sea sector. This framework consists of four regional unconformities and 15 other local unconformities derived from seismic profiles. Using these unconformities, along with lithological and geotechnical data, it was possible to define and correlate 14 major units and 21 subunits within the framework. The Quaternary cover in the area is characterized by a variety of environmental settings ranging from glacial terrestrial and fluvial to lacustrine as well as brackish and marine environments with associated erosion, reworking and deposition. The complexity of Quaternary deposits within the area is explained by its history of repeated ice advances interrupted by marine transgressions and exposed periglacial landscapes. Within the framework, eight buried tunnel valleys and two shallow buried river valleys are identified from seismic profiles with four phases of tunnel valley generation inferred. These phases of tunnel valley generation are associated with the Elsterian (three) and Saalian (one) glacial stages. Infill of these tunnel valleys consists of glaciofluvial sands, thick sequences of marine and lacustrine fine‐grained sediments and some reworked till remnants. Elsewhere, extensive tabular units have formed consisting of marine and fluvial sediments. We compare this new stratigraphy with previous stratigraphies for the German North Sea sector, attribute informal stratigraphical names and offer preliminary correlations with established stratigraphies from other sectors of the North Sea.  相似文献   

8.
《Quaternary Science Reviews》2007,26(7-8):1016-1036
The Quaternary development offshore the Faroe Islands has been studied using high-resolution seismic and core data from the R/V DANA 2000 cruise and previous cruises. Several glacial-related features and deposits are observed, all bearing witness to former extensive glaciations of the Faroe area. On the shelves, overlaying a mid-Pleistocene glacial erosional surface, glacial and glacimarine deposits form a sheet geometry interrupted by ridges of sediment that are likely to represent ice-front deposits. An iceberg turbate north of the Faroe Islands provides evidence of large-scale drift of ultra-deep draft (>600 m) icebergs in the Nordic Seas at pre-Weichselian glacial stage(s). Marginal and transverse troughs found on the eastern and western shelf are suggested to have formed during the same glacial period(s) as the iceberg turbate. Iceberg plough-marks and abundant ice rafted material of non-Faroese origin, together with the relict moraine ridges encircling the Faroe Islands at around the 100 and 200 m water depth contours, indicate that the outer shelf was probably ice free during the Weichselian ice age. On the slopes and basinal parts, the formation of fine-grained contourites was favoured during (Weichselian) glacial stages when bottom currents were reduced. Sediment overloading during these glacial stages resulted in repeated slope instability, causing mass failures of the contourite deposits.  相似文献   

9.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

10.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   

11.
In central and northern Sweden, glacial sediments and landforms, formed during Early and Middle Weichselian stadials and their transition into interstadials, are often preserved in spite of having been overridden by later glacial advances. This study presents an OSL‐dated glacial stratigraphy from Idre in west‐central Sweden, expanding the area in which Middle Weichselian ice‐free conditions have been identified. Three sedimentary units were identified, with the lowermost unit consisting of glaciolacustrine sand, deposited in a stagnant water‐body. Nine OSL samples gave ages ranging from 54 to 41 ka, suggesting deposition during a deglacial phase in MIS 3. Normal faults and silt veins, formed after deposition, indicate that the area was ice‐free for a prolonged period, enabling the melting of buried stagnant ice. Above an erosional unconformity is a sediment unit characterized by gravels and sands deposited in a proximal braided‐river environment. OSL ages range from 180 to 41 ka, indicating poor sediment bleaching during deposition. We thus consider them to give a maximum age of the sedimentation, indicating deposition at or after 41 ka. The uppermost unit consists of a stacked succession of subglacial traction tills and glaciotectonite beds, representing the Late Weichselian glaciation of the area, probably during the inception phase with a wet‐based glacier regime. At the last deglaciation of the area there was extensive meltwater erosion, eroding all sedimentary units and forming a landscape with terraces and channels, and erosional remnants of the uppermost diamict as free‐standing hummocks.  相似文献   

12.
High-resolution seismic data shed light on latest Pleistocene and Holocene sedimentation beneath the Büyükçekmece Bay, northern shelf area of the Marmara Sea, Turkey. Discontinuous fluvio-marine and marine deposits overlying the erosional truncation surface of Oligocene–Lower Miocene deposits are as thick as 30 m and preserved preferentially within the incised valleys that were controlled by some old faults. A series of prograding shoreline, laterally passing to the latest Pleistocene–Holocene valley-fill deposits, are thought to have accumulated mainly during times of shoreline transgression and sea-level rise. The overall morphology and stratigraphic setting observed in the Büyükçekmece Bay and at the southern outlet of the Bosphorus Strait have nearly same characteristics, implying that similar hydrodynamic conditions, erosional and depositional processes were mainly under the control of strong northerly flows during the Late Quaternary. These flows were less powerful in the Büyükçekmece region with decreased sediment input and smaller accommodation space.  相似文献   

13.
Eemian—Weichselian sequences, located outside the maximum limit of the Late Weichselian ice sheet, provide excellent opportunities for the discovery of continuous sedimentary records encompassing the whole Last Interglacial/Glacial cycle. Such a sequence is recorded in a borehole (117P) through the succession in a small kettlehole lake located at Medininkai, eastern Lithuania. The succession consists of peat, gyttja and silt deposited on top of a Saalian till. Pollen and plant macrofossil analysis, lithological analysis, U/Th dating and mineral magnetic measurements on the sediments have allowed 19 lithostratigraphic units and 16 local pollen assemblage zones (LPAZ) to be identified. The palaeocarpological record reveals a clear transition from the Saalian Glacial to the Weichselian stadial and interstadial phases. The mineral magnetic parameters suggest a good correlation between the concentration of magnetic minerals and stadial and interstadial periods. The Merkine (Eemian) Interglacial and two Early Weichselian Interstadials, Jonionys 1 (Brörup) and Jonionys 2 (Odderade), separated by cryomers, are identified. Intervals interpreted as analogous to the Middle Weichselian Denekamp and Hengelo interstadials are also recognized on the basis of pollen assemblages. The results show alternating periglacial and interstadial palaeoenvironments in Lithuania during the Early and Middle Weichselian and are of importance for Late Pleistocene palaeoenvironmental reconstruction of the Baltic area as a whole.  相似文献   

14.
Previous work has presented contrasting views of the last glaciation on Jameson Land, central East Greenland, and still there is debate about whether the area was: (i) ice-free, (ii) covered with a local non-erosive ice cap(s), or (iii) overridden by the Greenland Ice Sheet during the Last Glacial Maximum (LGM). Here, we use cosmogenic exposure ages from erratics to reconcile these contrasting views. A total of 43 erratics resting on weathered sandstone and on sediment-covered surfaces were sampled from four areas on interior Jameson Land; they give 10Be ages between 10.9 and 269.1 kyr. Eight erratics on weathered sandstone and till-covered surfaces cluster around ∼70 kyr, whereas 10Be ages from erratics on glaciofluvial landforms are substantially younger and range between 10.9 and 47.2 kyr. Deflation is thought to be an important process on the sediment-covered surfaces and the youngest exposure ages are suggested to result from exhumation. The older (>70 kyr) samples have discordant 26Al and 10Be data and are interpreted to have been deposited by the Greenland Ice Sheet several glacial cycles ago. The younger exposure ages (≤70 kyr) are interpreted to represent deposition by the ice sheet during the Late Saalian and by an advance from the local Liverpool Land ice cap in the Early Weichselian. The exposure ages younger than Saalian are explained by periods of shielding by non-erosive ice during the Weichselian glaciation. Our work supports previous studies in that the Saalian Ice Sheet advance was the last to deposit thick sediment sequences and western erratics on interior Jameson Land. However, instead of Jameson Land being ice-free throughout the Weichselian, we document that local ice with limited erosion potential covered and shielded large areas for substantial periods of the last glacial cycle.  相似文献   

15.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

16.
The Quaternary sequence of a boring from the island of Anholt, Denmark, comprises both marine and non-marine sediments spanning a time interval from the Holocene to at least as far back as the Saalian. The oldest Quaternary sediments consist of a till and a glaciofluvial sand sequence. These are overlain by marine silty clays of Saalian to Eemian age. An interstadial (Flakket Interstadial) and a stadial (Kattegat Stadial) are identified in the late Saalian. This climatic fluctuation has been compared to the Allerød and Younger Dryas events at the Weichselian–Holocene transition. The Eemian sediments are followed by sand and non-marine, varved clay overlain by 2 m of marine clay, which is correlated with the Middle Weichselian of the Skærumhede series. The marine clay is covered by silty clay and a thick sand sequence of non-marine origin. The uppermost 2 m sediments may represent the Holocene coastal accretion on Anholt.  相似文献   

17.
Several Eemian (Mikulino) marine deposits are known from the northwestern part of Russia and from Estonia. The best-known deposits are situated at Mga, Russia and at Prangli, Estonia. Two new sites with clayey and silty deposits covered by till were studied for pollen and diatoms at Peski, Russia and Põhja-Uhtju, Estonia. At Peski, the deposit representing the Eemian Interglacial is 3.8 m thick at the depth of 13.4–9.6 m above present sea-level. At Põhja-Uhtju, the deposit representing the Eemian is 3.5 m thick at the depth of 47.9–51.4 m below present sea-level. Although Peski is situated at a higher altitude than Põhja-Uhtju at present, the diatom stratigraphy at these sites indicates deeper and more saline conditions in the Peski area than at Põhja-Uhtju during the Eemian. This result is similar to some previous studies, which indicate, that although the Russian deposits (e.g. Peski, Mga) are now at a higher altitude than those in Estonia (Põhja-Uhtju and Prangli), the diatoms in the Russian deposits are indicative of a considerable depth of water during the time of deposition. These deposits suggest that the Eemian shore levels ascend from Estonia eastwards, while the Late Weichselian and Holocene shorelines tilt downwards in the same general direction. The present material from Estonia and northwestern part of Russia shows marked differences between the Eemian and Late Weichselian/Holocene crustal deformations, which probably resulted from different ice loads during the final glaciation phases and probably also from different deglaciation patterns during the Saalian and Late Weichselian.  相似文献   

18.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

19.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

20.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号