首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Sound from an airborne source travels to a receiver beneath the sea surface via a geometric path that is most simply described using ray theory, where the atmosphere and the sea are assumed to be isospeed sound propagation media separated by a planar surface (the air-sea interface). This theoretical approach leads to the development of a time-frequency model for the signal received by a single underwater acoustic sensor and a time-delay model for the signals received by a pair of spatially separated underwater acoustic sensors. The validity of these models is verified using spatially averaged experimental data recorded from a linear array of hydrophones during various transits of a turboprop aircraft. The same approach is used to solve the inverse time-frequency problem, that is, estimation of the aircraft's speed, altitude, and propeller blade rate given the observed variation with time of the instantaneous frequency of the received signal. Similarly, the inverse time-delay problem is considered whereby the speed and altitude of the aircraft are estimated using the differential time-of-arrival information from each of two adjacent pairs of widely spaced hydrophones (with one hydrophone being common to each pair). It is found that the solutions to each of the inverse problems provide reliable estimates of the speed and altitude of the aircraft, with the inverse time-frequency method also providing an estimate that closely matches the actual propeller blade rate  相似文献   

2.
浅海中的宽带水声信号传播呈现出频散的特点,通过高分辨率的时频分析方法可以刻画频散曲线。通过数值仿真和实验数据处理,对比分析几类常用的时频分析方法在提取宽带声信号频散曲线方面的性能。结果表明:STFT时频局部化精度不够高;在较强频散的情况下,DSTFT时频分辨率较高。WVD时频聚集性最好,但是有严重的交叉项干扰;固定核函数的CWD较好地抑制交叉项,时频分辨率虽优于STFT,但弱化了时频聚集性;AOK时频分布采用自适应高斯核函数,在抑制交叉项的同时,时频聚集性较好,有望较好地用于提取信号频散曲线。  相似文献   

3.
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a-2.39 power-law scaling with radius for r>0.8 mm, and a-1.11 power law for r<0.8 mm.  相似文献   

4.
Experiments are carried out to study the characteristics of active bubbles entrained by breaking waves as these propagate over an abruptly topographical change or a submerged breakwater. Underwater sounds generated by the entrained air bubbles are detected by a hydrophone connected to a charge amplifier and a data acquisition system. The size distribution of the bubbles is then determined inversely from the received sound frequencies. The sound signals are converted from time domain to time-frequency domain by applying Gabor transform. The number of bubbles with different sizes are counted from the signal peaks in the time-frequency domain. The characteristics of the bubbles are in terms of bubble size spectra, which account for the variation in bubble probability density related to the bubble radius r. The experimental data demonstrate that the bubble probability density function shows a - 2.39 power-law sealing with radius for r 〉 0. 8 mm, and a- 1.11 power law for r 〈0.8 mm.  相似文献   

5.
鲸豚类海洋哺乳动物发出的回声定位信号是一种频率较高的短时脉冲信号,研究回声定位信号检测方法有助于快速、准确地检测海洋哺乳动物发声,进而更好地保护海洋哺乳动物.本文提出了一种基于图像处理的鲸豚类动物回声定位信号检测方法.该方法首先对收集到的数据进行分帧,计算每帧信号的时频图;使用Frangi滤波器对时频图进行滤波,以降低...  相似文献   

6.
Wavelet analysis for processing of ocean surface wave records   总被引:2,自引:0,他引:2  
Wavelet analysis is a relatively new technique and in the recent years enormous interest in application of wavelets has been observed. This modern technique is particularly suitable for non-stationary processes as in contrast to the Fourier transform, (FT), the wavelet transform (WT) allows exceptional localization, both in time and frequency domains. The wavelet transform has been successfully implemented in signal and image processing, ordinary and partial differential equation theory, numerical analysis, communication theory and other fields. On the other hand, the application of the WT to ocean engineering and oceanography is rare. In this paper the WTs capability to give a full time–frequency representation of the wave signals is demonstrated. The processing of the time series of the non-stationary deep water waves, waves breaking at the tropical coral reefs and mechanically generated waves in the wave flume demonstrates the ability of the wavelet transform technique to detect a complex variability of these signals in the time–frequency domain. Various spectral representations resulting from the wavelet transform are discussed and their application for wave signals is shown.  相似文献   

7.
A mathematical model is formulated which accurately represents the envelope function of bottom return signals received from a number of spatial directions comprising a wide swath. The bottom return signals are processed utilizing a digital nonrecursive matched filter whose coefficients are tapered using a Tukey window. High-speed convolution employing the fast Fourier transform is examined for implementation of the digital matched filtering operation. Computer simulation of the signal processing system indicates that, even in the presence of considerable background and fluctuation noises, the processor provides an output signal having a well-defined peak. The error in time of arrival is found to be less than 3 ms, corresponding to an error in depth of less than 0.1 percent, for an average signal-to-noise ratio of 15 dB and a vertical ocean depth of 12 000 ft (3.7 km). These performance figures apply to the most difficult case of mapping at angles ofpm 45degoff vertical.  相似文献   

8.
基于小波变换,引入了能刻画风浪局域结构的局域小波能谱。论述了风浪的整体结构与局域结构。指出了在不同时间尺度上,风浪具有不同的局域化特征。提出了风场演化过程中整体的共振在线性相互作用是否存在的质疑。  相似文献   

9.
A theoretical model for the vertical directionality and depth dependence of high frequency (8 to 50 kHz) ambient noise in the deep ocean is developed. The anisotropic noise field at a variety of depths and frequencies is evaluated and displayed. It was found that at high frequencies and deep depths, a bottom-mounted hydrophone receives the maximum noise energy from overhead rather than from the horizontal. This leads to the consideration of an oblate hydrophone receiving response pattern for underwater tracking ranges that would provide a constant signal-to-noise ratio (SNR) for an acoustic source located anywhere in a circular area centered above the hydrophone. Two of the desirable characteristics of this type of pattern are the increase in receiving range of a bottom-mounted sensor and the decrease of the dynamic range of signals that a signal processor must handle.  相似文献   

10.
李焜  方世良 《海洋工程》2015,29(1):105-120
The conventional matched field processing (MFP) uses large vertical arrays to locate an underwater acoustic target. However, the use of large vertical arrays increases equipment and computational cost, and causes some problems such as element failures, and array tilting to degrade the localization performance. In this paper, the matched field localization method using two-hydrophone is proposed for underwater acoustic pulse signals with an unknown emitted signal waveform. Using the received signal of hydrophones and the ocean channel pulse response which can be calculated from an acoustic propagation model, the spectral matrix of the emitted signal for different source locations can be estimated by employing the method of frequency domain least squares. The resulting spectral matrix of the emitted signal for every grid region is then multiplied by the ocean channel frequency response matrix to generate the spectral matrix of replica signal. Finally, the matched field localization using two-hydrophone for underwater acoustic pulse signals of an unknown emitted signal waveform can be estimated by comparing the difference between the spectral matrixes of the received signal and the replica signal. The simulated results from a shallow water environment for broadband signals demonstrate the significant localization performance of the proposed method. In addition, the localization accuracy in five different cases are analyzed by the simulation trial, and the results show that the proposed method has a sharp peak and low sidelobes, overcoming the problem of high sidelobes in the conventional MFP due to lack of the number of elements.  相似文献   

11.
The acoustic spectrum of a propeller-driven aircraft is dominated by a series of spectral lines that are harmonically related to the blade rate (which is equal to the product of the propeller rotation rate and the number of blades on the propeller). We show that an array of acoustic sensors towed below the sea surface can be used for the passive detection and localization of such an aircraft. The acoustic energy from an aircraft is found to reach the subsurface sensors via two propagation paths: a bottom reflection path that enables the aircraft to be detected at long ranges, and a direct path that is present only when the aircraft passes overhead. For each of these paths, the observed variation with horizontal range of the Doppler shift in the blade rate closely matches the variation predicted by the simple model presented in this paper. Good agreement between theory and experiment is also obtained for the variation with horizontal range of the aircraft's apparent bearing. Thus, by using the observed Doppler shift and apparent bearing information, we were able to estimate the aircraft's horizontal range, speed, direction, and altitude.   相似文献   

12.
提出一种基于富里叶变换线性性实现时变滤波的方法,该方法可提高某些在传播过程中随着传播时间增加其高频成分逐渐减少的接收信号的信噪比。  相似文献   

13.
A blind estimator of the ocean acoustic channel impulse response envelope is presented. The signal model is characterized by a deterministic multipath channel excited by a highly nonstationary deterministic source signal. The time-frequency (TF) representation of the received signal allows for the separation between the channel and the source signal. The proposed estimator proceeds in two steps: First, the unstable initial arrivals allow for the estimation of the source signal instantaneous frequency (IF) by maximization of the radially Gaussian kernel distribution; then, the Wigner-Ville distribution (WV) is sequentially windowed and integrated, where the window is defined by the previously estimated IF. The integral gives the channel impulse response envelope, which turns to be an approximation to the blind conventional matched filter (MF). The blind channel estimator (CE) is applicable upon the following conditions: that the multipath channel contains at least one dominant arrival well separated from the others, and that the IF of the source signal is a one-to-one function. Results obtained on real data from the INternal TIde Measurements with Acoustic Tomography Experiments (INTIMATE'96), where the acoustic channel was driven by an linear frequency modulation signal, show that the channel's envelope detailed structure could be accurately and consistently recovered, with the correlation of the estimates ranging from 0.796 to 0.973, as compared to the MF result  相似文献   

14.
In this paper, we define a time-domain pressure transfer function calculated from SIWEH (smoothed instantaneous wave energy history) transforms, and a time-frequency domain pressure transfer function calculated from wavelet transforms, of synchronized wave and pressure data. It is our objective to study whether the time-domain pressure transfer function and the time-frequency domain pressure transfer function can provide new interpretation of wind wave behaviors. The detail structure of local time-frequency pressure transfer function in three-dimensional plot from wavelet transform is not employed due to its large variations, instead the time-integral wavelet spectral pressure transfer function and frequency-integral wavelet SIWEH pressure transfer function are used. These two averaged pressure transfer functions are smooth approximations of frequency-domain Fourier and time-domain SIWEH pressure transfer functions, respectively.Application to real ocean waves reveals that in frequency-domain the measured Fourier and wavelet spectral pressure transfer functions can be approximated by the linear pressure transfer function in the dominant wave range. In time-domain, the wavelet SIWEH pressure transfer function is a better indicator of wind wave behaviors than the SIWEH pressure transfer function. A value higher than 0.5 for the wavelet SIWEH pressure transfer function is a good discriminator of relative shallow-water long waves and wave groups are mostly composed of relative low frequency long waves.  相似文献   

15.
孙鹤泉 《海洋技术学报》2006,25(1):58-66,93
根据以往的工作积累,作者在文中介绍了在海洋技术中得到应用的几种数学变换,包括基于Fourier变换的频谱分析、波浪分离、相关分析及定义的H artley实现,连续M orlet小波变换在波浪信号分析中的应用,以及离散正交小波变换的降噪作用与悬沙图像的特征提取。文中通过公式推导和数据比较,展示了数学变换在海洋技术应用中的科学魅力。  相似文献   

16.
A special-purpose definition is proposed for phase fluctuations to overcome the obstacle of unpredictable dynamic changes in the phase angle. This definition implies a specific time history for each phase sample and any deviation is termed a phase fluctuation. Its application to acoustic data led to the development of a technique for temporally aligning the phase angles of the acoustic pressure phasors. This alignment process transforms the signal phasors to the real half-space of a rotated complex plane, while the corresponding noise is distributed with random phase angles. Signal processing conducted in the rotated plane improves the temporal coherence of the signals without significantly altering the incoherence of the noise. Coherent attenuation and cancellation of signals is common with temporal coherence and vector averaging. These were eliminated when the aligned-phase angles were substituted for the original unaligned phase angles. Thus, the transformation produces a net temporal coherence gain. Furthermore, it significantly improves the robustness of the signal processor to source and receiver motion. An automatic identifier of signals in the transformed plane also is introduced. Signal identification is based on aligned-phase angle temporal coherence, which significantly improves identification of signals. Results are included for both ocean and atmosphere acoustic data.  相似文献   

17.
At low frequencies, surface bubbles contribute to acoustic backscattering in aggregate, and the motion of these bubble masses causes spectral spreading of the acoustic signals. This motion of the bubbles entrained in the surface waves is used to obtain the power spectrum of a low-frequency surface-scattered signal at a low grazing angle. A spectral distribution of the deterministic surface drift, augmented by breaking wave crests, is developed for the wave frequency components that are actively breaking. This motion is combined with the random motion in a wave cycle to predict the spectral widths of low-angle backscattered sound. To permit comparisons with measured data, convolutions of these spectra with simple square pulses of various durations are performed  相似文献   

18.
This paper describes a novel framework for classifying underwater transient signals recorded by passive sonar. The proposed approach involves two key ideas. Firstly, a feature-selection algorithm is used to identify those acoustic features that optimally model each class of transient sound. Secondly, features that are perceptually motivated are proposed, i.e., they encode information that human listeners are likely to use in transient classification tasks. Three perceptual features are proposed, which encode timbre, the physical material of the sound source, and the temporal context (pattern) in which the transient occurred. The authors show how these features, which are computed over different temporal windows, can be combined to make classification decisions. The performance of the proposed classifier is evaluated on a corpus of transient signals extracted from passive sonar recordings. Specifically, the performance of the perceptual features is compared with spectral features and with those that encode statistics of time, frequency, and power. The present results show that the perceptual features provide valuable cues to the class of a transient. However, the best performing classifier was obtained by selecting a subset of perceptual, spectral, and statistical features in a class-dependent manner.  相似文献   

19.
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging.This paper presents a novel method for realizing the field monitoring of channel siltation in real time.The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle.By use of the multipath propagation structure of underwater acoustic channel,the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths.Bistatic transducer pairs are employed to transmit and receive the acoustic signals,and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver.The WRELAX (Weighted Fourier transform and RELAX) algorithm is used to obtain the high resolution estimation of multipath time delay.To examine the feasibility of the presented method and the accuracy and precision of the developed system,a series of sea trials are conducted in the southwest coast area of Dalian City,north of the Yellow Sea.The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM,and the uncertainty is smaller than ±0.06 m.Compared with the existing means for measuring the silt thickness,the present method is innovative,and the system is stable,efficient and provides a better real-time performance.It especially suits monitoring the narrow channel with rapid changes of siltation.  相似文献   

20.
A statistical theory of signal coherence   总被引:1,自引:0,他引:1  
A periodic signal can be perfectly predicted far into the future since it perfectly repeats every period. There is always some variation in the waveform over time for signals which are labeled as periodic but which are not truly deterministic. A formal definition is presented in this paper for such a varying periodic signal and the properties of such a class of signals are exploited. A measure called a signal coherence function of the amount of random variation in each Fourier component of the signal is defined and its statistical properties are developed. This signal coherence function is very different from the coherence function between two stationary signals. The method is applied to a digitized record of an acoustic signal generated by a boat in a bag in the Baltic Sea south of Stockholm, Sweden  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号