首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Santiaguito volcano has shown a continuous slow extrusion of dacite lava since 1922. In the 50 years of activity there have been four periods of abnormally high extrusion rates, interspersed by periods of little magma production. The type of activity shown by the volcano has been varied and crudely cyclic. Dome extrusion periods are accompanied by pyroclastic activity and followed by lava flows. There are now 16 time stratigraphic units delineated on the dome. Activity since 1967 has been especially closely observed. Dome extrusion at the west end of the complex has been accompanied by pyroclastic cruptions and plug dome extrusion at the east end. The eurrent extrusion rate has remained essentially constant since 1967 at about 5×106 m3/yr, far below Santiaguito’s 1922–71 average of 14×106 m3/yr. The active vent at the east end of the volcano (Caliente vent) has been the principal vent of the volcano since the creation of the explosion crater in 1902. After its initial period of dome extrusion (1922–25), the Caliente vent has chiefly produced pyroclastic eruptions as well as at least 95% of the dome’s lumarolic activity, while lateral vents have continued to give rise to lavas. Lava flows at Santiaguito have effective viscosity values of about 106 poises, while dome lavas are significantly more viscous. The differences in viscosity are in part related to volatile content of the lava when it reaches the surface. During dome extrusion, lavas lose their volatiles through pyroclastic activity before they reach the surface. Lava flows at Santiaguito occur when lava reaches the surface with higher volatile content. Obstruction of either the central (pyroclastic) vent or the lateral (dome extrusion) vent or both vents has an important influence on succeeding activity. In June 1972, at the time of this writing, the outbreak of new lava flows at both the Caliente and lateral El Brujo vents has just occurred, resulting from obstruction of pyroclastic activity by a large plug dome at the Caliente vent.  相似文献   

2.
The TKE dissipation rate in the northern South China Sea   总被引:1,自引:0,他引:1  
The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{p}} $ was mostly ~10–30 % of $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ . A weak dependence of bin-averaged dissipation $ \overline{\varepsilon} $ on the Richardson number was noted, according to $ \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} $ , where ε 0 + ε m is the background value of $ \overline{\varepsilon} $ for weak stratification and Ri cr?=?0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.  相似文献   

3.
The experimental flow data for rocks and minerals are reviewed and found to fit a law of the form $$\dot \varepsilon = A'\left[ {sinh (\alpha \sigma )} \right]^n \exp \left[ {{{ - (E * + PV * )} \mathord{\left/ {\vphantom {{ - (E * + PV * )} {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} \right]$$ where \(\dot \varepsilon \) This law reduces to the familiar power-law stress dependency at low stress and to an exponential stress dependency at high stress. Using the material flow law parameters for olivine, stress profiles with depth and strain rate are computed for a representative range of temperature distributions in the lithosphere. The results show that the upper 15 to 25 km of the oceanic lithosphere must behave elastically or fail by fracture and that the remainder deforms by exponential law flow at intermediate depths and by power-law flow in the rest. A model computation of the gravitational sliding of a lithospheric plate using olivine rheology exhibits a very sharp decoupling zone which is a consequence of the combined effects of increasing stress and temperature on the flow law, which is a very sensitive function of both.  相似文献   

4.
Calculations on the basis of the self-consistent approximation are used to study the effects of randomly distributed elliptical cracks and of non-randomly distributed circular cracks, either dry or saturated by a highly conductive material phase, on the electric conductivities of a cracked body. Analytic and numeric results are given for two special non-random distributions. In the first, the cracks are assumed randomly distributed in planes parallel to a given plane. In the second, the crack normals are randomly distributed in parallel planes. The results of the theoretical calculations indicate that the magnitudes of the crack induced variations of the dry cracked rock depend upon a crack density parameter ? rather than upon the crack porosity. Here, ? is defined as $$\varepsilon = \frac{{2N}}{\pi }< \frac{{A^2 }}{P} > $$ whereN is the average number of cracks per unit volume, andA andP are the crack area and perimeter respectively. (For circular cracks of radiusa, ?=N〈a3〉.) Although a straightforward relationship does connect ? with the porosity, it may be more meaningful for laboratory experiments to concentrate upon measuring crack-induced variations as functions of crack density rather than of porosity. For saturated cracked rocks, the results of the calculations indicate that, in addition to ?, variations in conductivity depend also upon a saturation parameter Ω, which relates crack aspect ratio α to matrix and fluid conductivities σ and σF $$\Omega = \frac{{{\sigma \mathord{\left/ {\vphantom {\sigma {\sigma _F }}} \right. \kern-\nulldelimiterspace} {\sigma _F }}}}{\alpha }.$$   相似文献   

5.
A new estimate of the fracture parameters of earthquakes is provided in this paper. By theMuskhelishvili method (1953) a number of basic relations among fracture-mechanics parameters are derived. A scheme is proposed to evaluate the slip weakening parameters in terms of fault dimension, average slip, and rise time, and the new results are applied to 49 events compiled in the earthquake catalogue ofPurcaru andBerckhemer (1982). The following empirical relations are found in the paper: $$\begin{gathered} \frac{{\tau _B - \tau _f }}{{\tau _\infty - \tau _f }} = 2.339 \hfill \\ {{\omega _c } \mathord{\left/ {\vphantom {{\omega _c } {W = 0.113}}} \right. \kern-\nulldelimiterspace} {W = 0.113}} \hfill \\ \log G_c \left( {{{dyne} \mathord{\left/ {\vphantom {{dyne} {cm}}} \right. \kern-\nulldelimiterspace} {cm}}} \right) = 2 \log L (km) + 6.167 \hfill \\ \log \delta _c (cm) = 2 \log L (km) - 1.652 \hfill \\ \end{gathered} $$ whereG c is the specific fracture energy,ω c the size of the slip weakening zone,δ c the slip weakening displacement,τ B ?τ f the drop in strength in the slip weakening zone,τ ?τ f the stress drop,L the fault length, andW the fault width. The investigation of 49 shocks shows that the range of strength dropτ B ?τ f is from several doze to several hundred bars at depthh<400 km, but it can be more than 103 bars ath>500 km; besides, the range of the sizeω c of the strength degradation zone is from a few tenths of a kilometer to several dozen kilometers, and the range of the slip weakening displacementδ c is from several to several hundred centimeters. The specific fracture energyG c is of the order of 108 to 1011 erg cm?2 when the momentM 0 is of the order of 1023 to 1029 dyne cm.  相似文献   

6.
7.
Lozovatsky  Iossif  Liu  Zhiyu  Fernando  Harindra Joseph S.  Hu  Jianyu  Wei  Hao 《Ocean Dynamics》2013,63(11):1189-1201

The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation \( {\widehat{\varepsilon}}_{\mathrm{BBL}} \) reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation \( {\widehat{\varepsilon}}_{\mathrm{p}} \) was mostly ∼10–30 % of \( {\widehat{\varepsilon}}_{\mathrm{BBL}} \). A weak dependence of bin-averaged dissipation \( \overline{\varepsilon} \) on the Richardson number was noted, according to \( \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} \), where ε 0 + ε m is the background value of \( \overline{\varepsilon} \) for weak stratification and Ri cr = 0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.

  相似文献   

8.
9.
We discuss the water-level variations in the E-1 well for the time period between May 2006 and 2010, inclusive. A trend towards an increasing level at an abnormally high rate occurred from mid-2006 to December 2009. This increase is regarded as the response of the aquifer of gas-saturated ground water that exists in the volcanogenic-sedimentary deposits of the Avacha volcano-tectonic depression to volumetric compression strain changes during the precursory period and the occurrence of a swarm of small earthquakes $\left( {K_{S_{\max } } = 8.3} \right)$ in the area of Koryakskii Volcano and to its phreatic eruption. We estimated the volumetric compression as ??? = ?(4.1 × 10?6?1.5 × 10?5) from the amplitude of water-level rise using the elastic parameters of the water-saturated rocks. While the strain source was active, we observed a decreasing sensitivity of the hydrodynamic regime in the well to the precursory processes before large (M ?? 5.0) tectonic earthquakes.  相似文献   

10.
The complete travel-time equation of state (CT-EOS) is presented by utilizing thermodynamics relations, such as; $$K_T = K_S (1 + \alpha \gamma T)^{ - 1} , \gamma = \frac{{\alpha K_S }}{{\rho C_P }}, \left. {\frac{{\partial C_P }}{{\partial P}}} \right)_T = - \frac{T}{\rho }\left[ {\alpha ^2 + \left. {\frac{{\partial \alpha }}{{\partial T}}} \right)_P } \right], etc.$$ The CT-EOS enables us to analyze ultrasonic experimental data under simultaneous high pressure and high temperature without introducing any assumption, as long as the density, or thermal expansivity, and heat capacity are also available as functions of temperature at zero pressure. The performance of the CT-EOS was examined by using synthesized travel-time data with random noise of 10?5 and 10?4 amplitude up to 4 GPa and 1500 K. Those test conditions are to be met with the newly developed GHz interferometry in a gas medium piston cylinder apparatus. The results suggest that the combination of the CT-EOS and accurate experimental data (10?4 in travel time) can determine thermodynamic and elastic parameters, as well as their derivatives with unprecedented accuracy, yielding second-order pressure derivatives (?2 M/?P 2) of the elastic moduli as well as the temperature derivatives of their first-order pressure derivatives ?2 M/?P?T). The completeness of the CT-EOS provides an unambiguous criterion to evaluate the compatibility of empirical EOS with experimental data. Furthermore because of this completeness, it offers the possibility of a new and absolute pressure calibration when X-ray (i.e., volume) measurements are made simultaneously with the travel-time measurements.  相似文献   

11.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

12.
13.
Recent acoustic Doppler current profiler (ADCP)-measurements in the Scheldt estuary near Antwerp, Belgium, revealed anomalous, i.e. anti-clockwise circulations in a left bend during the major part of the flood period; these circulations were established shortly after the turn of the tide. During ebb, anti-clockwise circulations persisted, as predicted by classical theory. These data were analysed with a 3D and a 1DV-model. The 3D simulations reveal that the anomalous circulations are found when salinity is included in the computations—without salinity “normal” circulations were found. From analytical and 1DV simulations, it is concluded that a longitudinal salinity gradient ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ may induce a near-bed maximum in flow velocity reversing the direction of the secondary currents. The 1DV-model was then used to assess the contribution of various processes one by one. It was found that because of a reduction in vertical mixing, the vertical velocity profile is not at equilibrium during the first phase of accelerating tide, further enhancing the effects of ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ . A small vertical salinity gradient ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial z}}} \right. \kern-0em} {\partial z}$ appeared to have a very large effect as the crosscurrents of the secondary circulations induced by ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ became an order of larger magnitude. However, at the site under consideration, the effects of transverse salinity gradients, generated by differential advection in the river bend, were dominant: adverse directions of the secondary circulations were found even when the vertical velocity profile became more regular with a more or less logarithmic shape, i.e. when the effects of ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial x}}} \right. \kern-0em} {\partial x}$ and ${\partial S} \mathord{\left/ {\vphantom {{\partial S} {\partial z}}} \right. \kern-0em} {\partial z}$ did not play a dominant role anymore. It is argued that data on the secondary velocity structure, which can be measured easily owing to today’s developments in ADCP equipment, may serve as an indicator for the accuracy at which the salinity field is computed with 3D numerical models. Moreover, the large effect of the salinity structure on the velocity field must have a large impact on the morphological development of estuaries, which should therefore be accounted for in morphological modelling studies.  相似文献   

14.
The Hilina Formation comprises the oldest sequence of lava flows and tuffs exposed on Kilauea Volcano. These rocks are only exposed in kipukas in younger Puna Formation lavas along cliffs on the south flank of Kilauea Volcano. Locally, tuffs and flows of the Pahala Formation separate the underlying Hilina Formation rocks rom the overlying Puna Formation rocks. Charcoal collected from the base of the Pahala Formation yielded a C14 age of 22.800±340 years B.P. which defines a minimum age for the Hilina Formation. Hilina Formation lavas crop out over a wide region and probably originated from the summit area and from both rift zones. The Hilina Formation contains both olivine-controlled and differentiated lavas (using the terminology ofWright, 1971). The olivine-controlled lavas of the Hilina Formation are distinguishable mineralogically and geochemically from younger olivine-controlled Kilauea lavas. The younger lavas generally contain discrete low-calcium pyroxene grains. greater glass contents, higher K2O/P2O5 ratios and lower total iron contents. Similar geochemical trends prevail for Manuna Loa lavas, and may typify the early lavas of Hawaiian shield volcanoes. Despite these similarities, the Hilina Formation (and all Kilauea) lavas have higher TiO2 and CaO, and lower SiO2 and Al2O3 contents than Mauna Loa Lavas. These differences have existed for over 30,000 years. Therefore, it is unlikely that the older lavas of Kilauea are compositionally similar to recent Mauna Loa lavas as was previously suggested. K2O, TiO2, Na2 and Zr contents of lavas from a stratigraphic sequence of Hilina Formation lavas are variable. These variations may be utilized to subdivide the sequence into geochemical groups. These groups are not magma batches. Rather, they represent lavas from batches whose compositions may have been modified by crystal fractionation and magma mixing.  相似文献   

15.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

16.
The Aegean and surrounding area (34°N–43°N, 18°E–30°E) is separated into 76 shallow and intermediate depth seismogenic sources. For 74 of these sources intervent times for strong mainshocks have been determined by the use of instrumental and historical data. These times have been used to determine the following empirical relations: $$\begin{gathered} \log T_t = 0.24M_{\min } + 0.25M_p - 0.36\log \dot M_0 + 7.36 \hfill \\ M_f = 1.04M_{\min } - 0.31M_p + 0.28\log \dot M_0 - 4.85 \hfill \\ \end{gathered} $$ whereT 1 is the interevent time, measured in years,M min the surface wave magnitude of the smallest mainshock considered,M p the magnitude of the preceding mainshock,M f the magnitude of the following mainshock, \(\dot M_0 \) the moment rate in each source per year. A multiple correlation coefficient equal to 0.74 and a standard deviation equal to 0.18 for the first of these relations were calculated. The corresponding quantities for the second of these relations are 0.91 and 0.22. On the basis of the first of these relations and taking into consideration the time of occurence and the magnitude of the last mainshock, the probabilities for the occurrence of mainshocks in each seismogenic source of this region during the decade 1993–2002 are determined. The second of these relations has been used to estimate the magnitude of the expected mainshock.  相似文献   

17.
We tested attenuation relations obtained for different regions of the world to verify their suitability to predict strong-motion data recorded by Medellín and Aburrá Valley Accelerographic Networks. We used as comparison criteria, the average of the difference between the observed and the predicted data as a function of epicenter distance and its standard deviation. We also used the approach developed by Sherbaum et al. (Bull Seism Soc Am 94:2164–2185, 2004) that provides a method to evaluate the overall goodness-of-fit of ground-motion prediction equations. The predictive models selected use a generic focal depth. We found that this parameter has an important influence in the ground-motion predictions and must be taken into account as an independent variable. We also found important to characterize the local soil amplification to improve the attenuation relations. We found empirical relations for peak horizontal acceleration PGA and velocity PGV based on the Kamiyama and Yanagisawa (Soils Found 26:16–32, 1986) approach. $$\begin{aligned} \log _{10} (PGA)=0.5886M_L -1.0902\log _{10}(R)-0.0035H+C_{st}\pm 0.\text{29} \end{aligned}$$ $$\begin{aligned} \log _{10} (PGV)=0.7255M_L -1.8812\log _{10}(R)-0.0016H+C_{st}\pm 0.36 \end{aligned}$$ where PGA is measured in cm/s $^{2}$ and PGV in cm/s, $M_{L}$ is local magnitude in the range 2.8–6.5, $R$ is epicentral distance up to 290 km, $H$ is focal depth in km and $C_{st}$ is a coefficient that accounts for the site response due to soil conditions of each recording station. The introduction of focal depth and local site conditions as independent variables, minimize the residuals and the dispersion of the predicted data. We conclude that $H$ and $C_{st}$ are sensitive parameters, having a strong influence on the strong-motion predictions. Using the same functional form, we also propose an empirical relation for the root mean square acceleration a $_\mathrm{rms}$ : $$\begin{aligned} \log _{10} \left( {a_{rms} } \right)=0.4797M_L -1.1665\log _{10} (R)-0.00201H+C_{st}\pm 0.40 \end{aligned}$$ where a $_\mathrm{rms}$ is measured in cm/s $^{2}$ , from the S-wave arrival and using a window length equal to the rupture duration. The other variables are the same as those for PGA and PGV. The site correction coefficients $C_{st}$ found for PGA, PGV and a $_\mathrm{rms}$ show a similar trend indicating a good correlation with the soil conditions of the recording sites.  相似文献   

18.
In the last two decades, south-central Europe and the Eastern Alps have been widely explored by many seismic refraction experiments (e.g., CELEBRATION 2000, ALP 2002, SUDETES 2003). Although quite detailed images are available along linear profiles, a comprehensive, three-dimensional crustal model of the region is still missing. This limitation makes this region a weak spot in continental-wide comprehensive representations of crustal structure. To improve on this situation, we select and collect 37 published active-source seismic lines in this region. After geo-referencing each line, we sample them along vertical profiles—every 50?km or less along the line—and derive P-wave velocities in a stack of homogeneous layers (separated by discontinuities: depth of crystalline basement, top of lower crust, and Moho). We finally merge the information using geostatistical methods, and infer S-wave velocity and density using empirical scaling relations. We present here the resulting crustal model for a region encompassing the Eastern Alps, Dinarides, Pannonian basin, Western Carpathians and Bohemian Massif, covering the region within $45^{\circ}\text{--}51^{\circ}\hbox{N}$ and $11^{\circ} \text{--} 22^{\circ}\hbox{E}$ with a resolution of $0.2^{\circ} \times 0.2^{\circ}.$ We are also able to extend and update the map of Moho depth in a wider region within $35^{\circ}\text{--}51^{\circ}\hbox{N}$ and $12^{\circ}\text{--}45^{\circ}\hbox{E},$ gathering Moho values from the collected seismic lines, other published dataset and using the European plate reference EPcrust as a background. All the digitized profiles and the resulting model are available online.  相似文献   

19.
A possible dynamic process for magma flow in a volcanic conduit is briefly described. In many of the governing equations, viscosity of magma is involved, and hence, the effective viscosity of magma with small concentration of bubbles was calculated under the assumption of small Reynolds number. The result is $$\eta _\ell = \eta _u (1 + \Phi ),$$ where ηo is the viscosity of a liquid and ? is the volume concentration of bubbles. Thus, the effective viscosity increases with nucleation of gas bubbles in magma. This result reduces the effect of a thermal feedback evele which is postulated as a possible thermodynamical process in viscous magma in a volcanic conduit.  相似文献   

20.
Presently available data on the reaction of SO2 with OH radicals (OH + SO2 + \(M\xrightarrow[{k_1 }]{}\) HSO3 +M) are critically reviewed in light of recent stratospheric sulfur budget calculations. These calculations impose that the net oxidation ratek of SO2 within the stratosphere should fall within the range 10?7k≤10?9, if the SO2 oxidation model for the stratospheric sulfate layer is assumed to be correct. The effective reaction rate constantk 1 * =k 1[M] at the stratospheric temperature is estimated as $$k_1^* = \frac{{(8.2 \pm 2.2) \times 10^{ - 13} \times [M]}}{{(0.79 \mp 0.34) \times 10^{ - 13} + [M]}}cm^3 /molecules sec$$ where [M] refers to the total number density (molecules/cm3). Using the above limiting values ofk 1 * , and the estimated OH density concentrations, the net oxidation rate is calculated as 3.6×10?7k≤1.3×10?8 at 17 km altitude. This indicates that the upper limit of thesek values exceeds the tolerable range imposed by the model by a factor of about four. Obviously the uncertainty of thek 1 * values and of the OH concentrations in the stratosphere is still too large to make definite conclusions on the validity of the SO2 model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号