首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the microseismicity (M L ?<?2) in the region of Landau, SW Germany. Here, due to thick sediments (~3?km) and high cultural seismic noise, the signal-to-noise ratio is in general very low for microearthquakes. To gain new insights into the occurrence of very small seismic events, we apply a three-step detection approach and are able to identify 207 microseismic events (?1?<?M L ?<?~1) with signal-to-noise ratios smaller than 3. Recordings from a temporary broadband network are used with station distances of approximately 10?km. First, we apply a short-term to long-term average detection algorithm for data reduction. The detection algorithm is affected severely by transient noise signals. Therefore, the most promising detections, selected by coinciding triggers and high-amplitude measures, are reviewed manually. Thirteen seismic events are identified in this way. Finally, we conduct a cross-correlation analysis. As master template, we use the stacked waveforms of five manually detected seismic events with a repeating waveform. This search reveals additional 194 events with a cross-correlation coefficient exceeding 0.65 which ensures a stable identification. Our analysis shows that the repeating events occurred during the stimulation of a geothermal reservoir within a source region of only about 0.5?km3. Natural background seismicity exceeding our detection level of M L ?~?0.7 is not found in the region of Landau by our analysis.  相似文献   

2.
针对2014年8月-2015年1月安徽金寨发生的ML3.9震群,利用匹配滤波技术补充台网目录遗漏的地震事件,再利用波形互相关震相检测技术标定P波和S波到时,进一步采用双差定位方法对震群进行重定位,结合震源机制解等分析此次震群活动可能的发震构造.计算结果显示,通过互相关扫描检测到1376个地震台网常规分析遗漏的地震,数量...  相似文献   

3.
利用2004~2005年Hi-CLIMB计划架设在藏南日喀则附近由28台宽频带数字地震仪组成的二维台阵的地震记录,应用双差层析定位方法(TomoDD)对454个区域地震进行了精确重定位,共确定了340个地震的精确位置.发现区域震源深度呈明显的双层分布,其中有21 个地震的深度在50~80 km之间,与该地区的莫霍面深度相近.通过不同深度震源的理论地震图与实际地震图对比的方法,发现震源位置位于莫霍面上下地震图的震相存在明显差异,从而给出了存在地幔地震的直接观测证据.这一发现,对长期争论的地幔地震是否存在及大陆岩石圈流变结构的“三明治”模型有重要参考意义.  相似文献   

4.
2016年12月—2018年4月间布设于汶川、芦山地震之间地震空段的密集监测台阵(LmsSGA)提供了密集的观测数据.通过拾取地震走时、初始定位,计算地方震级,得到了完备性震级为0级的地震目录.更加完备的地震目录为地震空段及周围地震活动的时空分布特征和孕震风险性评估提供了丰富的信息.重定位结果显示地震主要集中于龙门山断裂带深度为5~20km的孕震层内.地震活动频繁的汶川、芦山主震区,震源的空间分布模式与其早期余震相似,说明两次大地震的区域仍处于缓慢的应力调整阶段.青藏高原物质东向挤出受宝兴、彭灌杂岩阻挡,在两个杂岩体西北侧地震活动频繁.地震活动性分布显示汶川—茂县、映秀—北川断裂上存在一个清晰的长约30km,宽约20km的地震活动"空白"区域,与其下方因部分熔融而产生的低速体分布一致,我们推测熔融体的加温作用是导致空段内极低的地震活动性的主要原因.监测时段内仍观测到降雨变化率和地震数量呈反相关关系,再次证实了汶川—芦山地震间地震空段及邻区内季节性降雨对地震活动性存在一定调节作用.综合分析S波速度模型、历史强震活动及b值,我们推断地震空段东部的彭灌断裂中段及周围部分隐伏断层存在发生强震的风险.  相似文献   

5.
Large reservoirs have the risk of reservoir induced seismicity. Accurately detecting and locating microseismic events are crucial when studying reservoir earthquakes. Automatic earthquake monitoring in reservoir areas is one of the effective measures for earthquake disaster prevention and mitigation. In this study, we first applied the automatic location workflow (named LOC-FLOW) to process 14-day continuous waveform data from several reservoir areas in different river basins of Guizhou province. Compared with the manual seismic catalog, the recall rate of seismic event detection using the workflow was 83.9%. Of the detected earthquakes, 88.9% had an onset time difference below 1 s, 81.8% has a deviation in epicenter location within 5 km, and 77.8% had a focal depth difference of less than 5 km, indicating that the workflow has good generalization capacity in reservoir areas. We further applied the workflow to retrospectively process continuous waveform data recorded from 2020 to the first half of 2021 in reservoir areas in multiple river basins of western Guizhou province and identified five times the number of seismic events obtained through manual processing. Compared with manual processing of seismic catalog, the completeness magnitude had decreased from 1.3 to 0.8, and a b-value of 1.25 was calculated for seismicity in western Guizhou province, consistent with the b-values obtained for the reservoir area in previous studies. Our results show that seismicity levels were relatively low around large reservoirs that were impounded over 15 years ago, and there is no significant correlation between the seismicity in these areas and reservoir impoundment. Seismicity patterns were notably different around two large reservoirs that were only impounded about 12 years ago, which may be explained by differences in reservoir storage capacity, the geologic and tectonic settings, hydrogeological characteristics, and active fault the reservoir areas. Prominent seismicity persisted around two large reservoirs that have been impounded for less than 10 years. These events were clustered and had relatively shallow focal depths. The impoundment of the Jiayan Reservoir had not officially begun during this study period, but earthquake location results suggested a high seismicity level in this reservoir area. Therefore, any seismicity in this reservoir area after the official impoundment deserves special attention.  相似文献   

6.
《Journal of Geodynamics》2010,49(3-5):269-278
The project “Seismic Hazard Assessment for Almaty” has a main objective to improve existing seismic hazard maps for the region of northern Tien Shan and especially for the surroundings of Almaty and to generate a new geodynamic model of the region.In the first step a composite seismic catalogue for the northern Tien Shan region was created, which contains about 20,000 events and is representative for strong earthquakes for the period back to the year 500. For the period of instrumental observation 1911–2006 the catalogue contains data for earthquakes with a body wave magnitude larger than 4. For smaller events with magnitudes up to 2.2 the data are only available since 1980. The composite catalogue was created on the basis of several catalogues from the United States Geologic Survey (USGS), local catalogues from the Kazakh National Data Centre (KNDC) and the USSR earthquake catalogue. Due to the different magnitudes used in several catalogues a magnitude conversion was necessary.Event density maps were created to rate the seismicity in the region and to identify seismic sources. Subsurface fault geometries were constructed using tectonic model which uses fault parallel material flow and is constrained by GPS data. The fault geometry should improve the estimation of the expected seismic sources from seismic density maps.First analysis of the earthquake catalogue and the density maps has shown that nearly all large events are related to fault systems. Annual seismicity distribution maps suggest different processes as the cause for the seismic events. Apart from tectonics, also fluids play a major part in triggering of the earthquakes.Beneath the Issyk-Kul basin the absence of strong seismic activity suggests aseismic sliding at the flat ramp in a ductile crust part and low deformation within the stable Issyk-Kul micro-continent which underthrust the northern ranges of Tien Shan. First results suggest a new partition of the region in tectonic units, whose bounding faults are responsible for most of the seismic activity.  相似文献   

7.
The lower Jinsha River basin is located at the junction of Sichuan and Yunnan provinces in Southwest China, a region with intense tectonic movements and frequent moderate to strong seismic activities. Cascade hydropower stations have been constructed along the lower Jinsha River since 2012. However, research on the effect of the impoundment of large-scale cascade reservoirs in a river basin on local seismic activities is currently lacking. Accurately identifying earthquake locations is essential for studying reservoir-induced earthquakes. Analyzing the spatiotemporal migration process of seismic activities based on complete and precise earthquake relocation is fundamental for determining the fluid diffusion coefficient, constructing fault models for reservoir areas, identifying earthquake types, exploring earthquake mechanisms, and evaluating seismic hazards. The seismicity pattern in the Xiangjiaba and Xiluodu reservoir areas, where seismic activities had been weak for a long time, has changed with the successive impoundment of the two reservoirs, showing microseismic events and seismic clusters. We investigated the spatiotemporal characteristics of seismic activities in the Xiangjiaba and Xiluodu reservoir areas using the waveform cross-correlation-based double-difference relocation technique and the b-value analysis method. We discovered that seismic events after the impoundment of these two reservoirs exhibited different characteristics in different regions. The seismic activities at the Xiluodu dam quickly responded to the rising water level, with the seismic intensity decaying rapidly afterward. These events were concentrated in the limestone strata along both sides of the Jinsha River, with a shallow focal depth, generally within 5 km, and a high b-value of approximately 1.2. Such features are close to those of karst-type earthquakes. Microseismic activities frequent occur on the eastern bank of the Yongshan reservoir section downstream of the Xiluodu dam, with two parallel NW-trending earthquake strips visible after precise earthquake relocation. The MS5.2 earthquake near Wuji town on August 17, 2014, had prominent foreshocks and aftershocks distributed in a clear NW-trending 20-km-long strip, perpendicular to the riverbank. These seismic events had a low b-value of approximately 0.7. The orientation of the node plane revealed by the strike-slip focal mechanism of the mainshock is consistent with that of the strip formed by the foreshock-mainshock-aftershock sequence, indicating the existence of a NW-striking concealed fault. Seismic activities near the Yanjin-Mabian fault upstream of the Xiangjiaba reservoir area since 2013 were concentrated in a NW-trending strip, with several near EW-trending seismic clusters on its western side, and with the largest event having a magnitude of ML3.7. So far, the impoundment of the Xiangjiaba and Xiluodu reservoirs has not triggered seismic activities on the large Jinyang-Ebian and Yanjin-Mabian faults nearby.  相似文献   

8.
根据1500年以来的地震活动,用确定性方法对华北地区地震地面危害分布图进行了定量计算。震源和研究区域均用网格单元表示,网格点的间距取为0.2°。计算中主要的输入参量为该地区的地震目录、震源机制、地震活动水平、深部结构模型等。各个单元上模拟的理论地震图考虑到了来自不同地点的震源和传播路径的影响。计算获得了华北地区最大地面运动和设计地面加速度(DGA)的分布图。最大DGA值位于北京以东,达0.75g。该结果可对未来华北地区地震危害的分布特征研究和该地区的防震减灾工作提供依据  相似文献   

9.
An advanced method of automated seismic phase picking and exact location and magnitude determination of swarm micro-earthquakes from local network data is presented. The phase picker is applied in two steps: first, S-wave groups are identified using a polarisation detector, and then corresponding P-wave groups are searched for. The times of maximum P- and S-amplitudes are then used as starting points for the determination of accurate P- and S-arrival times. The maximum S-wave amplitudes are utilised for determining local magnitudes. The whole procedure is checked by simultaneous preliminary hypocentre location providing estimates of local magnitudes and a compatibility check of the candidate P- and S-phases. The closest station to the earthquake cluster is used as a master, and the phase search at the remaining stations is governed by the P- and S-phases identified at the master station. Thanks to the use of apriori information on the approximate position of hypocentres, the procedure is also capable of picking the individual P- and S-phases of sequences of overlapping swarm events. The performance of the procedure was tested by comparison of the automatically and interactively created catalogues of the January 1997 NW-Bohemia micro-earthquake swarm. With stations located at epicentral distances between 0 and 20 km, the difference between hypocentre coordinates obtained by automatic and interactive processing did not exceed 80 m for 86% events. All events above magnitude 0.5 were identified, and the automatically determined polarity of first P-wave motion proved to be correct in 89% of them.  相似文献   

10.
The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains, deep valleys, and swift currents in this area. This region also features complex tectonic structures and frequent earthquakes. After the impoundment of the reservoirs, seismic activity increased significantly. Therefore, it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds, thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas. In this study, we selected the data of 7,670 seismic events recorded by the seismic networks in Sichuan, Yunnan, and Chongqing and the temporary seismic arrays deployed nearby. We then applied the double-difference tomography method to this data, to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds. The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure. Seismic events are mainly distributed in the transition zones between high- and low-velocity anomalies, and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas. Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth; this high-velocity anomaly plays a role in stress accumulation, with few earthquakes distributed inside the high-velocity body. After the impoundment of the Baihetan reservoir, the number of earthquakes in the reservoir area increased significantly. The seismic events in the reservoir area north of 27° N were related to the enhanced activity of nearby faults after impoundment; the earthquakes in the reservoir area south of 27° N were probably induced by additional loads (or regional stress changes), and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure.  相似文献   

11.
基于2009—2017年新疆区域数字地震台网记录的地震波形数据,利用波形互相关技术及主事件定位方法识别并重新定位了新疆天山中段及其周缘的重复地震。以波形互相关系数0.9作为阈值来确定研究区的重复地震事件,统计结果显示3万零181个事件中的1万1 618个为重复地震事件,这些重复地震事件组成了2395组重复地震对和重复地震丛,占总事件数的38.5%。根据重复地震重定位前后地震对之间距离的统计结果推测,该区域的系统定位误差约为5—10 km。进一步结合该区域最新的震源分类结果对不同震源类型重复地震的时空分布特征予以分析,结果显示:重复矿山爆破事件在空间上呈丛集性分布,且其中的93.6%发生于白天,同时呈现季节性发生模式,即爆破多发生于夏季,而冬季较少;而重复构造地震在空间上大多沿断层分布,24小时内呈随机分布的特征,且研究时段内每个月的活动水平相对平稳;重复诱发地震成丛分布于靠近油气田和水库的区域,但其中部分诱发地震的位置与构造地震重叠,发震时间特征与构造地震相似,为随机分布。   相似文献   

12.
—The western Alpine regions have been instrumented since the beginning of the century, and the number of seismological stations largely increased since 1980. This dense network has allowed an important improvement in the hypocentral determination, even for low magnitude events. This condition was a good opportunity to perform a synthesis of 32 years of instrumental seismicity in the Western Alps and southeast of France (1962–1993) and to attempt an improvement of the older event location with the assistance of the more recent locations.¶The revised catalogue of seismicity is built using station corrections and regional crustal models. After the elimination of non-natural events, the catalogue is composed of 6697 events. Another improvement corresponds to the revision of magnitudes. We performed several tests to evaluate the reliability of our results location of quarry events and rock bursts, epicentral correlation with geological features, coherence in depth with interpreted seismic profile (ECORS line), Moho isobaths. A first use of this catalogue is presented for the Haute-Ubaye region in the southwestern Alps.  相似文献   

13.
The catalogue of earthquakes recorded in Iran during 2006–2010 by a dense network of digital telemetric seismic stations is analyzed. The spectrum of the time series of these earthquakes contains a sharp maximum at 24 h. The corresponding curve of diurnal periodicity constructed by the superposed epoch method has a clear double-peak maximum near noon(11 a.m.-5 p.m. local time), which exceeds the level of seismic activity observed during the rest time of the day by a factor of 3-3.5. In the same time interval, the average hourly magnitudes of seismic events sharply drop from M = 2.15 to M = 1.95. The ratio of the normalized number of earthquakes in the daytime to those at other times of the day, which was determined within a moving window half a square degree in size, has seven distinct compact spatially isolated maxima whose magnitudes attain several dozens to a hundred units. These maxima are probably caused by industrial activity, such as road building and quarry explosions. We also note the presence of the weekend effect when the daytime maximum in the weekly curve of diurnal variations in seismic activity almost completely disappears on Friday, which is the weekend in Muslim countries. At the same time, elimination of the supposed noise component from the catalogue by the approved technique changes nothing for the daytime maximum in the daily pattern of earthquakes in Iran. In order to account for this inconsistency, we suggest invoking additional information on the technogenic seismicity and considering weak earthquakes induced by quarry explosions and vibrations of industrial machines, in particular, power units of numerous hydroelectric power stations distributed over the territory of Iran.  相似文献   

14.
For faster and more robust ray tracing in 1-D velocity models and also due to the lack of reliable 3-D models, most seismological centers use 1-D models for routine earthquake locations. In this study, as solution to the coupled hypocenter-velocity problem, we compute a regional P-wave velocity model for southern Iran that can be used for routine earthquake location and also a reference initial model for 3-D seismic tomography. The inversion process was based on travel time data from local earthquakes paired reports obtained by merging the catalogues of Iranian Seismic Center (IRSC, 6422 events) and by the Broadband Iranian National Seismic Network (BIN, 4333 events) for southern Iran in the period 2006 through July 2017. After cleaning the data set from large individual reading errors and by identifying event reports from both networks belonging to same earthquake (a process called event pairing), we obtained a data set of 1115 well-locatable events with a total number of 24,606 P-wave observations. This data set was used to calculate a regional minimum 1-D model for southern Iran as result of an extensive model search by trial-and-error process including several dozens of inversions. Significantly different from previous models, we find a smoothly increasing P-velocity by depth with velocities of 5.8 km/s at shallow and velocities of 6.4 km/s at deepest crustal levels. For well-locatable events, location uncertainties are estimated in the order of ±?3 km for epicenter and double this uncertainty for hypocentral depth. The use of the minimum 1-D model with appropriate station delays in routine hypocenter location processing will yield a high-quality seismic catalogue with consistent uncertainty estimates across the region and it will also allow detection of outlier observations. Based on the two catalogues by IRSC and BIN and using the minimum 1-D model and station delays for all stations in the region, we established a new combined earthquake catalogue for southern Iran. While the general distribution of the seismicity corresponds well with that of the two individual catalogues by IRSC and BIN, the new catalogue significantly enhances the correlation of seismicity with the regional fault systems within and between the major crustal blocks that as an assembly build this continental region. Furthermore, the unified seismic catalogue and the minimum 1-D model resulting from this study provide important ingredients for seismic hazard studies.  相似文献   

15.
The accuracy of automatic procedures for locating earthquakes is influenced by several factors such as errors in picking seismic phases, network geometry, modeling errors and velocity model uncertainties. The main purpose of this work is to improve the performances of the automatic procedure employed for the “quasi-real-time” location of seismic events in North Western Italy by developing a procedure based on a waveform similarity analysis and by using only one seismic station.To detect “earthquake families” a cross-correlation technique was applied to a data set of seismic waveforms recorded in the period 1985-2002, in a small test area (1600 km2) located in the South Western Alps (Italy). Normalized cross-correlation matrices were calculated using about 2700 seismic events, selected on the basis of the signal to noise ratio, manually picked and located by using the Hypoellipse code. The waveform similarity analysis, based on the bridging technique, allowed grouping about 65% of the selected events into 80 earthquake families (multiplets) located inside the area considered. For each earthquake family a master event is selected, manually re-picked and re-located by using Hypoellipse code. Having chosen a reference station (STV) on the basis of the completeness of the available data set, an automatic procedure has been developed with the aim of cross-correlating new seismic recordings (automatically picked) to the waveforms of the events belonging to the detected families. If the new event is proved to belong to a family (on the basis of the cross-correlation values), its hypocenter co-ordinates are defined by the location of the master event of the associated family. The performance of the proposed procedure is tested and demonstrated using a data set of 104 selected earthquakes recorded in the period January 2003-June 2004 and located in the test area. The automatic procedure is able to locate, associating events with the multiplets detected by the waveform similarity analysis, about 50% of the test events, almost independently of the accuracy of the automatic phase picker and without the biasing of the network geometry and of the velocity model uncertainties.  相似文献   

16.
Correct representation of seismic waveforms propagating through the mantle from a 600 km deep earthquake is presented using graphic interpolation between synthetic seismograms computed across a grid of mantle depths and distances. All torsional normal modes with periods above 12 s are summed to create 72,846 seismograms at depths between the surface and the core-mantle boundary. The resulting time snapshots show the manner by which seismic shear energy propagates around the core away from the source.  相似文献   

17.
为监测东祁连山北缘断裂带附近的地震活动性,布设包含240台短周期地震仪的面状密集台阵,进行约30 d的连续观测。首先使用基于深度学习的多台站地震事件检测算法(CNNDetector)进行地震事件检测,然后使用震相拾取网络(PhaseNet)对地震事件进行P波和S波到时拾取,其次使用震相关联算法(REAL)进行震相关联及初定位,最后使用双差定位(hypoDD)进行地震重定位,最终的精定位地震目录中共有517个地震。在密集台阵观测期间,中国地震台网正式地震目录中共有39个位于台阵内的地震事件,相比而言,密集台阵检测到大量小于0级的地震。因此通过布设密集台阵,可提高活动断裂微地震活动性的监测能力。与历史地震空间分布相比,密集台阵地震精定位分布具有较好的一致性,表现出更明显的线性分布特征。基于地震分布,发现研究区域存在与地表断层迹线走向不同的隐伏活跃断裂。  相似文献   

18.
Seismotectonic zonation studies in the Tell Atlas of Algeria, a branch of the Africa-Eurasia plate boundary, provide a valuable input for deterministic seismic hazard calculations. We delineate a number of seismogenic zones from causal relationships established between geological structures and earthquakes and compile a working seismic catalogue mainly from readily available sources. To this catalogue, for a most rational and best-justified hazard analysis, we add estimates of earthquake size translated from active faulting characteristics. We assess the regional seismic hazard using a deterministic procedure based on the computation of complete synthetic seismograms (up to 1 Hz) by the modal summation technique. As a result, we generate seismic hazard maps of maximum velocity, maximum displacement, and design ground acceleration that blend information from geology, historical seismicity and observational seismology, leading to better estimates of the earthquake hazard throughout northern Algeria. Our analysis and the resulting maps illustrate how different the estimate of seismic hazard is based primarily on combined geologic and seismological data with respect to the one for which only information from earthquake catalogues has been used.  相似文献   

19.
We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5–2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts’ experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a distance of about 2,000 km from the main shock was formed by three stations, with the stations and both events on the same great circle. Such spurious events are rejected by checking consistency between detections at stations at different back azimuths from the source region. Two additional effective pre-filters are f–k analysis and F prob based on correlation traces instead of original waveforms. Overall, waveform cross-correlation is able to improve the REB completeness, to reduce the workload related to IDC interactive analysis, and to provide a precise tool for quality check for both arrivals and events. Some major improvements in automatic and interactive processing achieved by cross-correlation are illustrated using an aftershock sequence from a large continental earthquake. Exploring this sequence, we describe schematically the next steps for the development of a processing pipeline parallel to the existing IDC one in order to improve the quality of the REB together with the reduction of the magnitude threshold.  相似文献   

20.
The historical earthquake catalogue of China has lasted more than 3000 years,and most of its data are inferred from historical records.The earthquake catalogue in earlier times is not complete owing to various reasons,so some events are lost.This paper estimates the loss rate of earthquakes with various magnitudes in the historical earthquake catalogue for different time intervals quantitatively by using the Gutenberg-Richter formula and modern instrumental records,which will provide the references for statistic research in seismicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号