首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Gavarnie nappe is a feature of the Tertiary Pyrenean orogen and is shown to consist of at least two thrust sheets of Palaeozoic rocks which are overlain by a southward-dipping sequence of Cretaceous and Eocene sediments, showing folded thrust structures. The Gavarnie nappe covers a basement and Mesozoic cover-rock sequence which is exposed in the tectonic windows of La Larri and the Troumouse Cirque. Here, previously unrecognized thrusts involving basement were responsible for folding the overlying Gavarnie nappe. These basement-involved thrusts climb up section westwards giving a westward lowering of the Gavarnie thrust along strike. The structural evolution of the Gavarnie nappe in a region extending from Heas in France to the Valle de Pineta in Spain can be explained in terms of a piggy-back thrusting sequence. On a regional scale, thrust-tectonic models may be used to explain the double vergence of the Pyrenean chain where early southward-directed thrusting was responsible for structures in the South Pyrenean zone. A later northward-directed back thrusting event, or rotation of southward-directed thrust sheets by the stacking of lower thrust horses, can explain the steepness of structures in the axial zone and the northward-verging North Pyrenean thrust zone. Both models suggest that prior to the Pyrenean orogeny, some of the Hercynian structures in the axial zone were flatter lying, and have been rotated to their present steepness during the Pyrenean orogeny.  相似文献   

2.
Balanced and restored cross-sections through the central and eastern Pyrenees, constructed using both surface and borehole data, demonstrate the presence of c.18km of shortening above a flat lying N-directed Alpine décollement surface. Hangingwall diagrams show how the North Pyrenean satellite massifs are culminations within this thrust system. Pre-thrusting structures such as subhorizontal stretching lineations in the North Pyrenean Fault zone became rotated above these culminations as the North Pyrenean Fault was cut by Alpine thrusts. Stratigraphic evidence demonstrates that N-directed thrust movements occurred between mid Eocene and Oligocene time, and this is similar to the age of major S-directed thrust movements on the south side of the Axial Zone. The N-directed thrust system probably originated as a series of backthrusts to the dominant S-directed structures.  相似文献   

3.
In the Pyrenees, the development of mylonites zones is one of the most striking structural features. Two sets of mylonites of regional extent have been recognized: large longitudinal E-W to N110°E trending zones (e.g. Mérens fault and North Pyrenean fault) and oblique NW-SE trending zones cross-cutting both the Hercynian and the post-Hercynian terrains. The longitudinal zones limit the major structural zones of the Pyrenees and are associated with NW-SE “en échelons” folds in the Mesozoic terrains and rotations of rootless plutonic or gneissic massifs, acting as competent inclusions in a more ductile matrix, in the Hercynian basement. The oblique mylonite zones limit map-scale fold-bands and appear as the sheared limbs of these folds.The age of the oblique zones and of the major movements along the longitudinal zones is clearly Alpine and the “en échelons” folds seem to have controlled the sedimentation during the Upper Albian and possibly during the Upper Cretaceous. Early movements along the longitudinal zones may have been Hercynian.The analysis of the structures at all scales leads us to interpret these mylonite zones and associated structures as the ultimate result of a transcurrent simple shear acting during the whole Mesozoic period. This strike-slip shearing was probably associated with an extension perpendicular to it from the Permian to the Upper Cretaceous and then to a shortening component also perpendicular to it from the Late Cretaceous to the Eocene.The development of the mylonite zones appears to have predated the major Alpine thrusting but to have been reactivated during this thrusting, acting as initiation sites for the thrusts or as oblique ramps in the case of the oblique mylonite zones.  相似文献   

4.
Seven mylonitic samples and two coarse muscovites from the central Pyrenees have been dated by the 40Ar-39Ar method. Whole rock specimens of mylonite were cut out of thin-section chips allowing complete characterisation of mineralogy and texture. Several specimens showed rising staircase patterns in the range 50–90 Ma, with much higher ages in the highest temperature steps. This is believed to reflect mixing of argon released from micas with excess argon contained in plagioclase and released mainly at high temperatures. One biotite-quartz mylonite gave a plateau age of 93 ± 2 Ma. Other inferred mica ages are about 60–73 Ma for biotite and 50–60 Ma for muscovite; it is probable that biotite contains excess argon and that 50 Ma approximates to the cooling age in the mylonites. One coarse muscovite collected immediately below the major Mérens shear zone gave a Hercynian plateau age, while another collected within the Mérens zone gave a partially reset Hercynian age.Taken together, the data indicate that the shear zones were active in Alpine times < 100 Ma and probably about 50 Ma ago. They are believed to have formed during the early stages of Eocene compression in the Pyrenees. Deformation and resultant uplift probably terminated an important thermal event in this part of the Pyrenean basement, which may have begun at the time of the mid-Cretaceous North Pyrenean metamorphism (90–100 Ma).  相似文献   

5.
A detailed local structural map of the Mérens Fault zone at Port Vell (Vall Ferrera) reveals that the main fault-related mylonite band splits westwards into a network of mylonite zones. These consist of bands of highly-strained rocks exhibiting tightened folds, transposed foliations and extensive obliteration of pre-existing structures. Evidence of continuity of marble layers across the Port Vell mylonite zone, and structural and metamorphic similarities on both sides of the Port Vell mylonite band, indicate that there is no significant throw across it.The mylonite foliation forms parallel to the axial planes of tight folds in or near the mylonite zone which can be related to more open folds in adjacent areas. The Port Vell mylonite band corresponds to a pinched W-E axial trending late fold.In order to estimate the importance of these results, a review of the controversial geological significance of mylonite belts in the Pyrenees, with special emphasis on the Mérens Fault, introduces the paper.  相似文献   

6.
The structure of the eastern Pyrenees consists mainly of south-directed thrusts involving basement and cover rocks. An antiformal stack developed by the piling up of basement thrust sheets which outcrop in the Axial zone. These structures account for a thin-skinned thrust model rather than a vertical fault model in which the Axial zone would be essentially autochthonous, and the North-Pyrenean fault the axial plane of a fan thrust system. New data from the Eastern Pyrenees and the thin-skinned model suggest that(1) the structure east of the Pedraforca nappe is similar to that of the Central Pyrenees; (2) the cover rocks of the South-Pyrenean units and of the Axial zone-after restoration—built up a northwards-thickening prism consistent with the existence of a unique Pyrenean sedimentary basin during Mesozoic time; (3) the Axial zone is only a complex antiformal stack developed as a part of South-Pyrenean system related to the Paleogene thrusting-tectonics. The Axial zone palaeogeographic area had no special meaning during Mesozoic time.  相似文献   

7.
Surface structural data and published stratigraphies are combined to construct two balanced and restored sections through the Nogueras Zone of the south central Pyrenees. The allochthonous Nogueras Zone units are interpreted as the foreland-dipping margin of a major antiformal stack in the Palaeozoic rocks of the Pyrenean Axial Zone. Their structural evolution is summarized in a hangingwall sequence diagram. This reinterpretation of the Nogueras Zone is incorporated into a new NS balanced and restored section from the centre of the Pyrenean Axial Zone to the Ebro Basin. A classical ‘Rocky Mountains’ piggy-back thrust model is employed and the resulting section is a significant departure from those previously published. It is argued that ‘gravity gliding’ has never been an important mechanism in the Alpine Pyrenees. Section restoration casts doubt on the correlation of the surface expression of the North Pyrenean Fault and the seismically detected Moho step beneath it.  相似文献   

8.
Abstract

The structure of the Pyrenean pre-Hercynian rocks involved in the “Axial Zone” antiformal stack, results from the association of Hercynian cleavage-related folds and Hercynian and Alpine thrusts. Some of these Alpine and Hercynian thrusts separate thrust sheets in which Upper Paleozoic rocks, Devonian and pre-Hercynian Carboniferous, exhibit different lithostratigraphy and internal structure.

In order to know both, the original Devonian facies distribution and the structural characteristics, the effects of the Alpine and the Hercynian thrusts must be considered. If a conceptual restored cross-section is constructed taking into account both the Alpine and Hercynian thrusts, a different Devonian facies distribution is achieved. Devonian carbonatic successions were originally located in a northernmost position, whereas sequences made by alternations of slates and limestones lie in southernmost areas. Moreover, a N-S variation of the Hercynian structural style appears. In the northern units thrusts are synchronous to folding development and they are the most conspicuous structures. In the intermediate units, thrust postdate cleavage-related folds, and in the southernmost units several folding episodes, previous to the thrusts, are well developed.

We present some examples which enable us to discuss the importance of the Hercynian and Alpine thrusts in the reconstruction of the Pyrenean pre-Alpine geology.  相似文献   

9.
From surface and subsurface data, line-length and area balancing were used to construct four balanced and restored sections of the Pyrenees. In the Mesozoic cover, a thin-skinned tectonic model is used. In the basement an anticlinal stack geometry is applied for the foreland part of the thrust nappes. We present and discuss three possible models for the deep structures of the belt: a thin-skinned tectonic model, a thick-skinned tectonic model and an inhomogeneous strain model. The thrusts steepen downwards and the displacements die out in ductile deformation deep in the section. Therefore, we use the inhomogeneous strain model and we equal-area balance the surface of the continental crust.Hanging-wall sequence diagrams are constructed taking into account (1) the strong N-S thickness variations of the Mesozoic cover related to the Cretaceous drift of Spain and (2) the related crustal thinning of the North Pyrenean Zone superimposed upon a previous late Hercynian rise of the lower crust.The Moho step at the vertical of the North Pyrenean Fault results from the thinning of the North Pyrenean Zone. The thickening of both the Axial Zone and the North Pyrenean Zone during the Eocene compressional event preserved the step geometry.Calculated values of the minimum shortening range from 55 km in the western part of the belt to 80 km in the eastern part. Most of the shortening occurs south of the North Pyrenean Fault in the eastern part (Axial Zone) and north of the North Pyrenean Fault in the western part (Labourd thrust).  相似文献   

10.
The evolution of the European Cenozoic Rift System (ECRIS) and the Alpine orogen is discussed on the base of a set of palaeotectonic maps and two retro-deformed lithospheric transects which extend across the Western and Central Alps and the Massif Central and the Rhenish Massif, respectively.During the Paleocene, compressional stresses exerted on continental Europe by the evolving Alps and Pyrenees caused lithospheric buckling and basin inversion up to 1700 km to the north of the Alpine and Pyrenean deformation fronts. This deformation was accompanied by the injection of melilite dykes, reflecting a plume-related increase in the temperature of the asthenosphere beneath the European foreland. At the Paleocene–Eocene transition, compressional stresses relaxed in the Alpine foreland, whereas collisional interaction of the Pyrenees with their foreland persisted. In the Alps, major Eocene north-directed lithospheric shortening was followed by mid-Eocene slab- and thrust-loaded subsidence of the Dauphinois and Helvetic shelves. During the late Eocene, north-directed compressional intraplate stresses originating in the Alpine and Pyrenean collision zones built up and activated ECRIS.At the Eocene–Oligocene transition, the subducted Central Alpine slab was detached, whereas the West-Alpine slab remained attached to the lithosphere. Subsequently, the Alpine orogenic wedge converged northwestward with its foreland. The Oligocene main rifting phase of ECRIS was controlled by north-directed compressional stresses originating in the Pyrenean and Alpine collision zones.Following early Miocene termination of crustal shortening in the Pyrenees and opening of the oceanic Provençal Basin, the evolution of ECRIS was exclusively controlled by west- and northwest-directed compressional stresses emanating from the Alps during imbrication of their external massifs. Whereas the grabens of the Massif Central and the Rhône Valley became inactive during the early Miocene, the Rhine Rift System remained active until the present. Lithospheric folding controlled mid-Miocene and Pliocene uplift of the Vosges-Black Forest Arch. Progressive uplift of the Rhenish Massif and Massif Central is mainly attributed to plume-related thermal thinning of the mantle-lithosphere.ECRIS evolved by passive rifting in response to the build-up of Pyrenean and Alpine collision-related compressional intraplate stresses. Mantle-plume-type upwelling of the asthenosphere caused thermal weakening of the foreland lithosphere, rendering it prone to deformation.  相似文献   

11.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   

12.
A new tomographic image of the Pyrenean lithosphere from teleseismic data   总被引:1,自引:0,他引:1  
A new tomographic model of the Pyrenean lithosphere is determined down to 200 km depth from teleseismic P and PKP travel times, with a lateral resolution of 0.25°. Compared to previous models, two important improvements are 1) a larger number of stations with a more even distribution, in particular to the west of the range, and 2) the introduction, before inversion, of crustal corrections inferred from previous refraction and reflection experiments. This last point is crucial because a strong Moho jump (up to 20 km) is present at the North Pyrenean Fault, the former boundary between Eurasian and Iberian plates. The comparison of the models obtained with and without crustal corrections reveals the strong contamination of the models by the crust down to 100 km depth. In the uncorrected model, a large strip with negative P-velocity anomalies, previously interpreted as subduction of lower crust, is observed. It disappears in the corrected model. Moreover, the introduction of crustal corrections allows us to reveal short wavelength heterogeneities which were hidden by the crustal signal.An attempt is made to relate the heterogeneities revealed by the tomographic model with the tectonic history of the Pyrenees, in particular with the Alpine orogeny. The Alpine phase includes an extensive episode with generation of the thin continental crust and possibly the opening of an oceanic sea floor, and then a compressive stage. In our model, no signature of an oceanic subducted slab could be detected all along the range, a result which rules out the opening of a large oceanic floor before the compressive stage. A subduction of continental crust is possible but, due to the transformation of lower crust into eclogite at depth, it can not be detected by seismological methods, whereas it was observed from electrical and gravity data. To the East of the range, large heterogeneities with low velocities are ascribable to the Neogene extension related to the rotation of the Corso–Sardo block and the opening of the Gulf of Lion. A prominent high velocity anomaly extending down to 200 km in eastern-central Pyrenees could possibly be interpreted as a detached piece of the Tethys slab. In north of Iberia outside the range, deep (down to 200 km) low velocity structures oriented N130°E are probably related to Hercynian orogeny.  相似文献   

13.
This paper presents a structural analysis of the external zone of Alpine Corsica, including the autochthonous domain and overlying external nappes (Santa Lucia and Balagne nappes). Two stages of nappe emplacement are identified occurring prior to and after the deposition of the Eocene sediments which were laid down upon first generation thrust contacts but are imbricated with their composite (continental and ophiolitic) basement by second generation thrusts. Five generations of structures with regional extent have been distinguished. However, the first generation has not been recognized within the visible part of the autochthon domain.Eoalpine first generation structures, restricted to allochthonous units, and Late Eocene to Early Oligocene second generation structures were nearly contemporaneous with the two stages of thrusting. The precise significance of E-W third generation structures is poorly understood. Broadly N-S fourth generation structures resulted from Oligocene compressive tectonics (folding and local backthrusting). Finally, fifth generation structures were generated during a Miocene extensional stage.These results are partly consistent with structural features previously reported in the southern and the northern outcrops of the Schistes lustrés, i.e. the main part of the allochthonous domain. A summary of a regional tectonic evolution is thus proposed for Alpine Corsica from Eoalpine obduction to Miocene extension.  相似文献   

14.
An intracratonic thrust belt, developed during the early Carboniferous in central Australia, deformed the Amadeus Basin and its basement, the Arunta Block. This belt is characterized by a marked structural asymmetry (vergence) and by the deposition of a thick molasse basin on the foreland. A review of existing field data shows that décollement tectonics produced folding, thrusting, faulting and back-faulting of the sedimentary sequence. Thin-skinned tectonics extend into the basement to produce recumbent folds and têtes plongeantes of nappe structures rooted in steeply dipping mylonite zones of greenschist to amphibolite grade. Minimum horizontal shortening displacements are 50–100 km resulting in a 50–70% contraction of the upper part of the basement. The structures and shortening are best explained by a crustal duplex, characterized by a crustal-scale thrust system, i.e. a sole thrust and imbricate faults, responsible for an isostatic bending of the underthrust slab. The observed Bouguer anomaly profiles support this crustal model. The dynamic evolution of this thrust belt on the scale of the crust is of thin-skin type.  相似文献   

15.
The Wadi El-Shush area in the Central Eastern Desert (CED) of Egypt is occupied by the Sibai core complex and its surrounding Pan-African nappe complex. The sequence of metamorphic and structural events in the Sibai core complex and the enveloping Pan-African nappe can be summarized as follows: (1) high temperature metamorphism associated with partial melting of amphibolites and development of gneissic and migmatitic rocks, (2) between 740 and 660 Ma, oblique island arc accretion resulted in Pan-African nappe emplacement and the intrusion of syn-tectonic gneissic tonalite at about 680 ± 10 Ma. The NNW–SSE shortening associated with oblique island arc accretion produced low angle NNW-directed thrusts and open folds in volcaniclastic metasediments, schists and isolated serpentinite masses (Pan-African nappe) and created NNE-trending recumbent folds in syn-tectonic granites. The NNW–SSE shortening has produced imbricate structures and thrust duplexes in the Pan-African nappe, (3) NE-ward thrusting which deformed the Pan-African nappe into SW-dipping imbricate slices. The ENE–WSW compression event has created NE-directed thrusts, folded the NNW-directed thrusts and produced NW-trending major and minor folds in the Pan-African nappe. Prograde metamorphism (480–525 °C at 2–4.5 kbar) was synchronous with thrusting events, (4) retrograde metamorphism during sinistral shearing along NNW- to NW-striking strike-slip shear zones (660–580 Ma), marking the external boundaries of the Sibai core complex and related to the Najd Fault System. Sinistral shearing has produced steeply dipping mylonitic foliation and open plunging folds in the NNW- and NE-ward thrust planes. Presence of retrograde metamorphism supports the slow exhumation of Sibai core complex under brittle–ductile low temperature conditions. Arc-accretion caused thrusting, imbrication and crustal thickening, whereas gravitational collapse of a compressed and thickened lithosphere initiated the sinistral movement along transcurrent shear zones and low angle normal ductile shear zones and consequently, development and exhumation of Sibai core complex.  相似文献   

16.
The Spanish Central Pyrenees have been the scenario of at least two damaging earthquakes in the last 800 years. Analysis of macroseismic data of the most recent one, the Vielha earthquake (19 November 1923), has led to the identification of the North Maladeta Fault (NMF) as the seismic source of the event. This E–W trending fault defines the northern boundary of the Maladeta Batholith and corresponds to a segment of the Alpine Gavarnie thrust fault. Our study shows that the NMF offsets a reference Neogene peneplain. The maximum observed vertical displacement is  730 m, with the northern downthrown sector slightly tilting towards the South. This offset provides evidence of normal faulting and together with the presence of tectonic faceted spurs allowed us to geomorphically identify a fault trace of 17.5 km. This length suggests that a maximum earthquake of Mw = 6.5 ± 0.66 could occur in the area. The geomorphological study was improved with a resistivity model obtained at Prüedo, where a unique detritic Late Miocene sequence crops out adjacent to the NMF. The section is made up of 13 audiomagnetotelluric soundings along a 1.5 km transect perpendicular to the fault trace at Prüedo and reveals the structure in depth, allowing us to interpret the Late Miocene deposits as tectonically trapped basin deposits associated with normal faulting of the NMF. The indirect age of these deposits has been constrained between 11.1 and 8.7 Ma, which represents a minimum age for the elevated Pyrenean peneplain in this part of the Pyrenees. Therefore, we propose the maximum vertical dip-slip rate for the NMF to be between 0.06 and 0.08 mm/a. Normal faulting in this area is attributed to the vertical lithospheric stress associated with the thickened Pyrenean crust.  相似文献   

17.
We reconstructed the accretion process related to Paleo-Tethys subduction recorded in northern Thailand, based on mélange and thrust structures, and metamorphic temperatures derived from illite crystallinity data. Mélange formation was characterized by hydrofracturing and cataclastic deformation, with mud injection under semi-lithified conditions followed by shear deformation and pressure solution. Illite crystallinity data suggest metamorphic temperatures below 250 °C during mélange formation. The combined structural and metamorphic data indicate that during mélange formation, the accretionary complex related to Paleo-Tethys subduction developed at shallow levels within an accretionary prism. Asymmetric shear fabrics in mélange indicate top-to-south shear. After correction for rotation associated with collision between the Indian and Eurasian continents, the trend of the Paleo-Tethys subduction zone is estimated to have been N80 °E. We conclude that the Paleo-Tethys was subducted northward beneath the Indochina Block from the Permian to Triassic.  相似文献   

18.
The Sis conglomerate body represents the Middle Eocene to Oligocene transfer‐zone trunk palaeovalley fill of the Sis fluvial system, a drainage system established within the Pyrenees during Late Palaeocene times. The spatial stability of the fluvial transfer zone (active for at least 38 My), and hence the longevity of its aggradational palaeovalley component (>19·5 My), was controlled by its location between long‐lived pre‐existing structures. Coarse‐grained fluvial facies dominate the palaeovalley fill, with alluvial fan facies shed from its defining marginal structures. The detailed sedimentology of very proximal fluvial facies deposited within the dominantly erosional realm of an active mountain belt has rarely been documented before because of their poor preservation potential. The Sis conglomerate body contains a robust internal stratigraphy with stratigraphic units defined by distinct bounding surfaces, across which there are pronounced changes in facies and provenance. These mark the reorganization of the headward portions of the Sis fluvial system during the evolution of the Pyrenean Axial Zone antiformal stack. Major changes in discharge resulted, demonstrating the highly variable nature of even mountain belt‐scale fluvial systems when viewed on timescales of several to tens of millions of years. Provenance details indicate that initial unroofing of Hercynian granitoids, situated within the Pyrenean Axial Zone, occurred around 54·5 Ma (early Ypresian) immediately before the first significant exhumation event within the drainage basin of the Sis fluvial system. This is earlier than previously constrained by apatite fission track studies. Rock uplift accelerated in the Lutetian and Bartonian with the initial aggradation of the palaeovalley fill (the Cajigar and Cornudella Formations and Sis One and Two Members). This became marked in the Priabonian (Sis Three and Four Members), with significant activity on local structures including the Morreres backthrust. An increase in basement‐derived clasts and a headwater decapitation event also indicate pronounced Axial Zone antiformal stack development at this time. Axial Zone development intensified further in the Oligocene with the deposition of the Collegats Formation and the switch in the main depositional loci of the system from the Tremp‐Graus thrust‐sheet‐top basin to the Ebro Basin to the south.  相似文献   

19.
In Alpine Corsica, the major tectonic event during the late Cretaceous was the thrusting to the west of an ophiolitic nappe and its sedimentary cover upon the Variscan basement and its Mesozoic cover. A detailed field survey shows that the basal contact of the nappe corresponds to a pluri-kilometric scale shear zone. Thus gneissified basement slices have been tectonically emplaced in the ophiolitic nappe. The thrusting was responsible for small scale structures: foliation, lineation and folds, initiated in a HP/LT metamorphic context. The deformation analysis shows that the finite strain ellipsoid lies in the constriction field close to that for plane strain. Moreover occurrences of rotational criteria in the XZ planes (sigmoidal micas, asymmetric pressure shadows, quartz C-axes fabrics) are in agreement with shear from east to west. All structural data from microscopic to kilometric scales, of which the most widespread is a transverse stretching lineation, can be interpreted by a simple shear model involving ductile synmetamorphic deformation. At the plate tectonic scale the ophiolitic obduction is due to intraoceanic subduction blocked by underthrusting of continental crust beneath oceanic lithosphere.  相似文献   

20.
The Pyrenees is a young mountain belt formed as part of the larger Alpine collision zone. This excursion explores the development of the Pyrenean Mountain Belt in southern France, from its early extensional phase in the mid‐Cretaceous and subsequent collisional phase, through its uplift and erosion in the Late Cretaceous and again in the Eocene, which led to the development of the Aquitaine‐Languedoc foreland basin. One of the complexities of the Pyrenean Belt is that thrusting, uplift and erosion during the Pyrenean orogeny exposed older Variscan basement rocks in the central core of the mountains, rocks which were metamorphosed during an earlier event in the late Carboniferous. Thus, this orogenic belt also tells the story of an earlier collision between Laurussia in the north and Gondwana in the south at c. 300 Ma, prior to the onset of the Pyrenean events at c. 100 Ma. Here we seek to unravel these two separate orogenic stories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号