首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The need to estimate velocity and discharge indirectly in gravel-bedded rivers is a commonly-encountered problem. Semilogarithmic friction equations are used to estimate mean velocity using a friction factor obtained from depth and grain size information. Although such equations have a semi-theoretical basis, in natural gravel-bed channels, an empirical constant (6.8 or 3.5) has to be introduced to scale-up the characteristic grain size (D50 or D84) to represent the effective roughness length. In this paper, two contrasting approaches are used to suggest that the multiplier of characteristic grain size is attributable to the effect of small-scale form resistance, reflecting the occurrence of microtopographic bedforms in gravel-bedded environments. First, spatial elevation dependence in short, detailed bed profiles from a single gravel-bedded river is investigated using semivariogram and zero-crossing analyses. This leads to objective identification of two discrete scales of bed roughness, associated with grain and microtopographic roughness elements. Second, the autocorrelation structure of the three-dimensional near-bed velocity field is examined to identify regularities associated with eddy shedding and energy losses from larger grains and microtopographic bedforms. Apart from improving the capacity to determine friction factors for velocity and discharge estimation, the findings have implications in general for the initial motion of gravelly bed material.  相似文献   

2.
Peatlands globally are at risk of degradation through increased susceptibility to erosion as a result of climate change. Quantification of peat erosion and an understanding of the processes responsible for their degradation is required if eroded peatlands are to be protected and restored. Owing to the unique material properties of peat, fine‐scale microtopographic expressions of surface processes are especially pronounced and present a potentially rich source of geomorphological information, providing valuable insights into the stability and dominant surface process regimes. We present a new process‐form conceptual framework to rigorously describe bare peat microtopography and use Structure‐from‐Motion (SfM) surveys to quantify roughness for different peat surfaces. Through the first geomorphological application of a survey‐grade structured‐light hand‐held 3D imager (HhI), which can represent sub‐millimetre topographic variability in field conditions, we demonstrate that SfM identifies roughness signatures reliably over bare peat plots (<1 m2), although some smoothing is observed. Across 55 plots, the roughness of microtopographic types is quantified using a suite of roughness metrics and an objective classification system derived from decision tree analysis with 98% success. This objective classification requires just five roughness metrics, each of which quantifies a different aspect of the surface morphology. We show that through a combination of roughness metrics, microtopographic types can be identified objectively from high resolution survey data, providing a much‐needed geomorphological process‐perspective to observations of eroded peat volumes and earth surface change. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Flow within the interfacial layer of gravel‐bed rivers is poorly understood, but this zone is important because the hydraulics here transport sediment, generate flow structures and interact with benthic organisms. We hypothesized that different gravel‐bed microtopographies generate measurable differences in hydraulic characteristics within the interfacial layer. This was tested using a high density of spatially and vertically distributed, velocity time series measured in the interfacial layers above three surfaces of contrasting microtopography. These surfaces had natural water‐worked textures, captured in the field using a casting procedure. Analysis was repeated for three discharges, with Reynolds numbers between 165000 and 287000, to evaluate whether discharge affected the impact of microtopography on interfacial flows. Relative submergence varied over a small range (3.5 to 8.1) characteristic of upland gravel‐bed rivers. Between‐surface differences in the median and variance of several time‐averaged and turbulent flow parameters were tested using non‐parametric statistics. Across all discharges, microtopographic differences did not affect spatially averaged (median) values of streamwise velocity, but were associated with significant differences in its spatial variance, and did affect spatially averaged (median) turbulent kinetic energy. Sweep and ejection events dominated the interfacial region above all surfaces at all flows, but there was a microtopographic effect, with Q2 and Q4 events less dominant and structures less persistent above the surface with the widest relief distribution, especially at the highest Reynolds number flow. Results are broadly consistent with earlier work, although this analysis is unique because of the focus on interfacial hydraulics, spatially averaged ‘patch scale’ metrics and a statistical approach to data analysis. An important implication is that observable differences in microtopography do not necessarily produce differences in interfacial hydraulics. An important observation is that appropriate roughness parameterizations for gravel‐bed rivers remain elusive, partly because the relative contributions to flow resistance of different aspects of bed microtopography are poorly constrained. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   

4.
Recent major seismic events, such as the Chi-Chi (1999) and the Wenchuan (2008) earthquakes occurred in Taiwan and China, have offered a variety of case histories on the performance of structures subjected to reverse faulting–induced deformation. A novel faulting mitigation method has recently been proposed, introducing a soft deformable wall barrier in order to divert the fault rupture away from the structure. This can be materialized by constructing a thick diaphragm-type soil bentonite wall (SBW) between the structure and the fault rupture path. The paper investigates the key parameters in designing such a SBW, aiming to mitigate the fault rupture hazard on shallow foundations. The paper employs a thoroughly validated finite element analysis methodology to explore the efficiency of a weak SBW barrier in protecting slab foundations from large tectonic deformation due to reverse faulting. A dimensional analysis is conducted in order to generalize the validity of the derived conclusions. The dimensionless formulation is then used to conduct a detailed parametric study, exploring the effect of SBW thickness w/H, depth HSBWl/H, and shear strength τsoil/τSBW, as well as the bedrock fault offset h/H, foundation surcharge load q/ρgB, and fault outcrop location s/B. It is shown that the wall thickness, depth, and shear strength should be designed on the basis of the magnitude of the bedrock fault offset, the location of the fault relative to the structure, and the shear strength of the soil. The efficiency of the weak barrier is improved using lower strength and stiffness material compared to the alluvium. A simplified preliminary design methodology is proposed, and presented in the form of a flowchart.  相似文献   

5.
不同土质条件下断层地表破裂对比研究   总被引:2,自引:0,他引:2  
本文结合华北地区几个地震统计区的实例,探讨了地震统计区的重要地震活动性参数b值和v4不确定性的主要影响因素及其特征,并研究分析了其不确定性的大小。结果表明,地震活动性参数的不确定性主要影响因素为样本统计时段、样本处理方法、统计下限震级、高震级年平均发生率等。在郯庐地震统计区,b值变化可达0.2以上,v4的变化可达1.4以上,汾渭地震统计区的不确定性也基本相当,河北平原地震统计区因为地震样本相对丰富,不确定性要小许多。  相似文献   

6.
在莫尔-库仑理论中引用Drucker-Prager准则,对于基岩断层及其上的覆盖土体建立相应的弹塑性模型,观察在不同力学条件下(张应力、压应力、剪应力),以及在基岩断层分别为正断或逆断作用下,上覆粉砂质土体和粘土质土体的错动变形。结果表明:在张应力作用下,粘土比砂土更易变形;在压应力作用下,砂土更易变形;而在剪应力作用下,粘土比砂土更易变形,且粘土抗剪强度越大,变形越大。在正断层作用下,在粉砂土与粘性土中所发生的变形并没有大的不同,而在逆断层载荷作用下,粉砂质土体比粘土质土体更容易变形位错。  相似文献   

7.
The quantitative analysis of morphologic characteristics of bedrock fault surface is a useful approach to study faulting history and identify paleo-earthquake. It is an effective complement to trenching technique, specially to identifying paleo-earthquakes in a bedrock area where the trenching technique cannot be applied. This paper focuses on the Luoyunshan piedmont fault, which is an active normal fault extending along the eastern boundary of the Shanxi Graben, China. There are a lot of fault scarps along the fault zone, which supply plentiful samples to be selected to our research, that is, to study faulting history and identify paleo-earthquakes in bedrock area by the quantitative analysis of morphologic characteristics of fault surfaces. In this paper, we calculate the 2D fractal dimension of two bedrock fault surfaces on the Luoyunshan piedmont fault in the Shanxi Graben, China using the isotropic empirical variance function, which is a popular method in fractal geometry. Results indicate that the fractal dimension varies systematically with height above the base of the fault surface exposures, indicating segmentation of the fault surface morphology. The 2D fractal dimension on a fault surface shows a ‘stair-like’ vertical segmentation, which is consistent with the weathering band and suggests that those fault surfaces are outcropped due to periodic faulting earthquakes. However, compared to the results of gneiss obtained by the former researchers, the characteristic fractal value of limestone shows an opposite evolution trend. 1)The paleo-earthquake study of the bedrock fault surface can be used as a supplementary method to study the activity history of faults in specific geomorphological regions. It can be used to fill the gaps in the exploration of the paleo-earthquake method in the bedrock area, and then broaden the study of active faults in space and scope. The quantitative analysis of bedrock fault surface morphology is an effective method to study faulting history and identify paleo-earthquake. The quantitative feature analysis method of the bedrock fault surface is a cost-effective method for the study of paleo-earthquakes in the bedrock fault surface. The number of weathered bands and band height can be identified by the segment number and segment height of the characteristic fractal dimension, and then the paleoearthquake events and the co-seismic displacement can be determined; 2)The exposure of the fault surface of the Luoyunshan bedrock is affected and controlled by both fault activity and erosion. A strong fault activity(ruptured earthquake)forms a segment of fault surface which is equivalent to the vertical co-seismic displacement of the earthquake. After the segment is cropped out, it suffers from the same effect of weathering and erosion, and thus this segment has approximately the same fractal dimension. Multiple severe fault activities(ruptured earthquake)form multiple fault surface topography. The long-term erosion under weak hydrodynamic conditions at the base of the fault cliff between two adjacent fault activities(intermittent period)will form a gradual slow-connect region where the fractal dimension gradually changes with the height of the fault surface. Based on the segmentation of quantitative morphology of the two fault surfaces on the Luoyunshan piedmont fault, we identified four earthquake events. Two sets of co-seismic displacement of about 3m and 1m on the fault are obtained; 3)The relationship between the fault surface morphology parameters and the time is described as follows:The fractal dimension of the limestone area decreases with the increase of the exposure time, which reflects the gradual smoothing characteristics after exposed. The phenomenon is opposite to the evolution of the geological features of gneiss faults acquired by the predecessors on the Huoshan piedmont fault; 4)Lithology plays an important role in morphology evolution of fault surface and the two opposite evolution trends of the characteristic fractal value on limestone and gneiss show that the weathering mechanism of limestone is different from that of the gneiss.  相似文献   

8.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed.  相似文献   

9.
The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses.  相似文献   

10.
11.
In this article, we first reviewed the method of boundary integral equation (BIEM) for modelling rupture dynamics of a planar fault embedded in a 3-D elastic half space developed recently (ZHANG and CHEN, 2005a,b). By incorporating the half-space Green's function, we successfully extended the BIEM, which is a powerful tool to study earthquake rupture dynamics on complicated fault systems but limited to full-space model to date, to half-space model. In order to effectively compute the singular integrals in the kernels of the fundamental boundary integral equation, we proposed a regularization procedure consisting of the generalized Apsel-Luco correction and the Karami-Derakhshan algorithm to remove all the singularities, and developed an adaptive integration scheme to efficiently deal with those nonsingular while slowly convergent integrals. The new BIEM provides a powerful tool for investigating the physics of earthquake dynamics. We then applied the new BIEM to investigate the influences of geometrical and physical parameters, such as the dip angle (δ) and depth (h) of the fault, radius of the nucleation region (Rasp), slip-weakening distance (Dc), and stress inside (Ti) and outside (Te) the nucleation region, on the dynamic rupture processes on the fault embedded in a 3-D half space, and found that (1) overall pattern of the rupture depends on whether the fault runs up to the free surface or not, especially for strike-slip, (2) although final slip distribution is influenced by the dip angle of the fault, the dip angle plays a less important role in the major feature of the rupture progress, (3) different value of h, δ, Rasp, Te, Ti and Dc may influence the balance of energy and thus the acceleration time of the rupture, but the final rupture speed is not controlled by these parameters.  相似文献   

12.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earthquake (M w 7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transtensional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the M w =6.8, M w =6.2 and M w ⩽=7.8 events, respectively. The M w =7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earthquake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks depends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface ruptures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Bayan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction. Supported by the National Natural Science Foundation of China (Grant No. 40474037) and the National Basic Research Program of China (Grant No. 2004CB418401)  相似文献   

13.
In this paper we show evidences of the fractal nature of the 3-D inhomogeneities in the lithosphere from the study of seismic wave scattering and discuss the relation between the fractal dimension of the 3-D inhomogeneities and that of the fault surfaces. Two methods are introduced to measure the inhomogeneity spectrum of a random medium: 1. the coda excitation spectrum method, and 2. the method of measuring the frequency dependence of scattering attenuation. The fractal dimension can be obtained from the inhomogeneity spectrum of the medium. The coda excitation method is applied to the Hindu-Kush data. Based on the observed coda excitation spectra (for frequencies 1–25 Hz) and the past observations on the frequency dependence of scattering attenuation, we infer that the lithospheric inhomogeneities are multiple scaled and can be modeled as a bandlimited fractal random medium (BLFRM) with an outer scale of about 1 km. The fractal dimension of the 3-D inhomogeneities isD 3=31/2–32/3, which corresponds to a scaling exponent (Hurst number)H=1/2–1/3. The corresponding 1-D inhomogeneity spectra obey the power law with a powerp=2H+1=2–5/3. The intersection between the earth surface and the isostrength surface of the 3-D inhomogeneities will have fractal dimensionD 1=1.5–1.67. If we consider the earthquake fault surface as developed from the isosurface of the 3-D inhomogeneities and smoothed by the rupture dynamics, the fractal dimension of the fault trace on the surface must be smaller thanD 1, in agreement with recent measurements of fractal dimension along the San Andreas fault.  相似文献   

14.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed.  相似文献   

15.
Flow resistance in mountain streams is important for assessing flooding hazard and quantifying sediment transport and bedrock incision in upland landscapes. In such settings, flow resistance is sensitive to grain-scale roughness, which has traditionally been characterized by particle size distributions derived from laborious point counts of streambed sediment. Developing a general framework for rapid quantification of resistance in mountain streams is still a challenge. Here we present a semi-automated workflow that combines millimeter- to centimeter-scale structure-from-motion (SfM) photogrammetry surveys of bed topography and computational fluid dynamics (CFD) simulations to better evaluate surface roughness and rapidly quantify flow resistance in mountain streams. The workflow was applied to three field sites of gravel, cobble, and boulder-bedded channels with a wide range of grain size, sorting, and shape. Large-eddy simulations with body-fitted meshes generated from SfM photogrammetry-derived surfaces were performed to quantify flow resistance. The analysis of bed microtopography using a second-order structure function identified three scaling regimes that corresponded to important roughness length scales and surface complexity contributing to flow resistance. The standard deviation σz of detrended streambed elevation normalized by water depth, as a proxy for the vertical roughness length scale, emerges as the primary control on flow resistance and is furthermore tied to the characteristic length scale of rough surface-generated vortices. Horizontal length scales and surface complexity are secondary controls on flow resistance. A new resistance predictor linking water depth and vertical roughness scale, i.e.  H/σz, is proposed based on the comparison between σz and the characteristic length scale of vortex shedding. In addition, representing streambeds using digital elevation models (DEM) is appropriate for well-sorted streambeds, but not for poorly sorted ones under shallow and medium flow depth conditions due to the missing local overhanging features captured by fully 3D meshes which modulate local pressure gradient and thus bulk flow separation and pressure distribution. An appraisal of the mesh resolution effect on flow resistance shows that the SfM photogrammetry data resolution and the optimal CFD mesh size should be about 1/7 to 1/14 of the standard deviation of bed elevation. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

17.
Aerodynamic roughness length (z0), the height above the ground surface at which the extrapolated horizontal wind velocity profile drops to zero, is one of the most poorly parameterised elements of the glacier surface energy balance equation. Microtopographic methods for estimating z0 have become prominent in the literature in recent years, but are rarely validated against independent measures and are yet to be comprehensively analysed for scale or data resolution dependency. Here, we present the results of a field investigation conducted on the debris covered Khumbu Glacier during the post‐monsoon season of 2015. We focus on two sites. The first is characterised by gravels and cobbles supported by a fine sandy matrix. The second comprises cobbles and boulders separated by voids. Vertical profiles of wind speed recorded by a tower comprising five cup anemometers and deployed over both sites enable us to derive measurements of aerodynamic roughness that reflect their observed surface characteristics (0.0184 m and 0.0243 m, respectively). At the second site, z0 also varied through time following snowfall (0.0055 m) and during its subsequent melt (0.0129 m), showing the importance of fine resolution topography for near‐surface airflow. To compare the wind profile data with microtopographic methods, we conducted structure from motion multi‐view stereo (SfM‐MVS) surveys across each patch and calculated z0 using three previously published approaches. The fully three‐dimensional cloud‐based approach is shown to be most stable across different scales and these z0 values are most correct in relative order when compared with the wind tower data. Popular profile‐based methods perform less well providing highly variable values across different scales and when using data of differing resolution. These findings hold relevance for all studies using microtopographic methods to estimate aerodynamic roughness lengths, including those in non‐glacial settings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Changes in surface roughness on carbonate fault scarps often reflect varying durations of subaerial weathering. On the Pleasant Valley fault in central Nevada, the documentation of a surface rupture in 1915, a long recurrence interval of faulting, slow weathering rate, and a relatively high (2–3 m) single-event displacement make the discrimination of the historical and penultimate slip patches unambiguous. Following from a 2018 study, we used a Schmidt hammer and terrestrial laser scanning (TLS) to further test whether these weathering patterns delineate exposed slip patches on a fault scarp. Results show that Schmidt hammer rebound value ranges (termed ΔR – the difference between minimum and maximum R-values in repeat impacts at a point), increase by ~8–10 points across the historical–penultimate event transition zone in two separate scarp transects. TLS-derived surface roughness also indicates a clear difference between the most recent and penultimate events. The average single-event displacement (SED) estimated using the Schmidt hammer and TLS is 2.85 m at two transect sites and is roughly equivalent to the visually estimated 3 m. While this fault is an ideal case where we know some of the slip history, the results demonstrate that these techniques show promise for discriminating slip patches on larger carbonate fault scarps with longer paleoearthquake histories, and could be used alongside 36Cl cosmogenic exposure-age dating to improve paleoseismic records on normal faults. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
The El Asnam earthquake of October 10, 1980 (Ms=7.3) produced surface faulting on a northeast-trending thrust fault of 30 km length with displacements of up to 6.5 m, though average displacements were about 3 m. In addition, widespread tensional features were formed, some in clear association with folding above the thrust, and others, in an area beyond the exposure of the thrust at the surface, which may be related to buried reverse faults.The observed thrust fault is split into southern, central and northern segments. Local and teleseismic data are examined to show that the main shock nucleated at the southwest end of the fault, and propagated 12 km northeast where a second rupture of approximately equal moment occurred, continuing the faulting a further 12 km northeast along the central segment. Both ruptures nucleated at about 8–10 km depth. Displacements were largest on the central segment, where they were probably enlarged by aftershocks, including one of mb=6.1 three hours after the main shock. The northern segment was much shorter than the other two, and showed smaller displacement.The junctions between fault segments are marked by distinct geomorphological characteristics and a change in strike of the faulting, as well as a sudden drop in the observed displacement. It appears that the rupture development is influenced by the changes in fault geometry between segments, and that such junctions or barriers have persisted through much of the late Quaternary.  相似文献   

20.
Recent seismicity in the northeast India and its adjoining region exhibits different earthquake mechanisms – predominantly thrust faulting on the eastern boundary, normal faulting in the upper Himalaya, and strike slip in the remaining areas. A homogenized catalogue in moment magnitude, M W, covering a period from 1906 to 2006 is derived from International Seismological Center (ISC) catalogue, and Global Centroid Moment Tensor (GCMT) database. Owing to significant and stable earthquake recordings as seen from 1964 onwards, the seismicity in the region is analyzed for the period with spatial distribution of magnitude of completeness m t, b value, a value, and correlation fractal dimension D C. The estimated value of m t is found to vary between 4.0 and 4.8. The a value is seen to vary from 4.47 to 8.59 while b value ranges from 0.61 to 1.36. Thrust zones are seen to exhibit predominantly lower b value distribution while strike-slip and normal faulting regimes are associated with moderate to higher b value distribution. D C is found to vary from 0.70 to 1.66. Although the correlation between spatial distribution of b value and D C is seen predominantly negative, positive correlations can also be observed in some parts of this territory. A major observation is the strikingly negative correlation with low b value in the eastern boundary thrust region implying a possible case of extending asperity. Incidentally, application of box counting method on fault segments of the study region indicates comparatively higher fractal dimension, D, suggesting an inclination towards a planar geometrical coverage in the 2D spatial extent. Finally, four broad seismic source zones are demarcated based on the estimated spatial seismicity patterns in collaboration with the underlying active fault networks. The present work appraises the seismicity scenario in fulfillment of a basic groundwork for seismic hazard assessment in this earthquake province of the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号