首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Three principal directions of magnetization are recognized in the central part of the Lewisian metamorphic terrain of north-west Scotland. The first ('A') magnetization is a high blocking temperature component residing in magnetite and imposed during post-Laxfordian uplift and cooling. Fifty sites yield an overall mean D = 285.9°, I = 54.9° and palaeomagnetic pole at 273.2° E, 37.6° N ( dp = 3.7°, dm = 5.2°); this magnetization was probably acquired at crustal depths of 6–10 km and is linked to K—Ar uplift ages averaging 1650–1625 Ma. The second ('B') magnetizations are defined by E—W directions and also reside in high blocking temperature components; they are, however, dipolar, have some properties distinct from the 'A' magnetizations, and are correlated with late stages in the history of the complex at 1400–1200 Ma. The third ('C') NE directed magnetizations reside predominantly in low blocking temperature components in pyrrhotite and possibly maghemite, and were probably acquired at a late stage of the regional uplift; they do not correlate with post-1450 Ma magnetizations from the Laurentian Shield and probably relate to the as yet undefined interval 1600–1450 Ma. The collective palaeomagnetic data and certain geologic data suggest that the Lewisian foreland should be rotated by 30° clockwise about a local axis of rotation on the conventional reconstruction of the North Atlantic continents; this rotation is associated with Lower Palaeozoic trans-current movements and may be related to a fourth ('D') magnetization of viscous origin.
A collective assessment of 1850–1600 Ma palaeomagnetic data for the Laurentian Shield defines a large apw loop; there is widespread agreement between data from the constituent structural provinces of the Shield although different metamorphic regions define complementary segments of the loop related to uplift over different intervals of time.  相似文献   

2.
Summary Nine basic dykes were sampled near Angmagssalik, east Greenland. Specimens have been treated by alternating field demagnetization in 11 steps up to 3000 (peak) oersted (300 ml). The 'cleaned' direction at all sites is recognized after treatment at 150 oersted. All specimens are reversely magnetized. The mean of the site mean directions has declination = 182°.0, inclination =−66°.9, it = 45, α95= 7°.7. This direction yields a palaeomagnetic pole (reversed) at 73°.4N, 139°.5E ( dp = 10°.7, dm = 12°.9) which is near, but significantly different from, that derived from lower Tertiary rocks in Greenland, namely 63°.2N, 184°.6E ( A 95= 4°.5). K-Ar ages of the nine dykes, based upon whole-rock and mineral separates, range from mid-Tertiary to Cambrian. It is impossible to reconcile these ages with the palaeomagnetic results. The palaeomagnetic evidence, supported by geological inference, suggests that all nine dykes are members of the east Greenland lower Tertiary dyke swarm, designated THOL1, of probable age c. 52 Ma.
The difference between the poles given above can be explained by supposing that the sampling area has tipped about a horizontal axis directed along 013°/193°, the angle of rotation being 13° (± 11°) anti-clockwise, when the axis is viewed along 013°. This local effect could have been due to block faulting when the north-east Atlantic started to open, or may be attributed to upwarping of the coast due to the weight of the ice-cap inland.  相似文献   

3.
From a nunatak in central North Greenland (81.5°N, 44.7°W) nine sites of Middle Proterozoic basic dykes, cutting Archaean basement, were palaeomagnetically investigated. After AF and thermal cleaning the nine dyke sites and three adjacently baked gneiss sites give a stable characteristic remanent mean direction of D = 265°, I = 21.5° ( N = 12, α 95= 5.6°), the direction being confirmed by a detailed and positive baked contact test.
The polarity of the dykes in the nunatak area is opposite to that of the Zig-Zag Dal Basalts and the Midsommersø Dolerites in eastern North Greenland some 200–300 km away, the volcanics of which are assumed to be of similar age (about 1.25 Ga). The remanent directions of the two sets of data are antiparallel within the 95 per cent significance level of confidence.
When rotating Greenland 18° clockwise back to North America by the 'Bullard fit', the pole of the central North Greenland dolerites (NDL) falls at (14.3°N, 144.3°W). The reversed pole (14.3°S, 35.7°E) fits well on to the loop between 1.2 and 1.4 Ma on the apparent polar wander swath of Berger & York for cratonic North America.
The palaeomagnetic results from the Middle Proterozoic basic dykes from central North Greenland thus strengthen previous palaeomagnetic results from the Midsommersø Dolerites and Zig-Zag Dal Basalts from the Peary Land Region in eastern North Greenland, suggesting that Greenland was part of the North American craton at least for the period between c . 1.3 and 1 Ma (and probably up to the end of Cretaceous time). The major geographical meridian of Greenland was orientated approximately E–W, and the palaeo-latitude of Greenland was about 10°–15°.  相似文献   

4.
Summary. Study of the palaeomagnetism of two complexes from the Newer Granite Suite in Scotland, at Ratagan (NW Highlands) and Comrie (central Highlands), reveals the variable nature of the natural remanence encountered in granodioritic intrusions and the surrounding metamorphic country rock. Forty-eight specimens from Ratagan, dated at 415 ± 5 Ma, gave a mean direction: D = 8°, I =−32°, and a palaeomagnetic south pole: 15°S, 346°E (δ p = 5°, δ m = 9°). Twenty-eight specimens from Comrie, dated at 408±5 Ma, gave a mean direction: D = 75°, I =−30°, and a palaeomagnetic south pole: 6°S, 287°E (δ p = 4°, δ m = 7°). These results have been compared with the established apparent polar wander path (APWP) for Britain. The Ratagan pole improves the reliability of the APWP but doubt remains as to whether the primary magnetization from Comrie represents a true late Silurian direction or whether it has been affected by post-cooling rotation, possibly associated with the nearby Highland Boundary Fault.  相似文献   

5.
A palaeomagnetic pole position, derived from a precisely dated primary remanence, with minimal uncertainties due to secular variation and structural correction, has been obtained for China's largest dyke swarm, which trends for about 1000 km in a NNW direction across the North China craton. Positive palaeomagnetic contact tests on two dykes signify that the remanent magnetization is primary and formed during initial cooling of the intrusions. The age of one of these dykes, based on U–Pb dating of primary zircon, is 1769.1 ± 2.5 Ma. The mean palaeomagnetic direction for 19 dykes, after structural correction, is D  = 36°, I  = − 5°, k  = 63, α 95 = 4°, yielding a palaeomagnetic pole at Plat=36°N, Plong=247°E, dp  = 2°, dm  = 4° and a palaeolatitude of 2.6°S. Comparison of this pole position with others of similar age from the Canadian Shield allows a continental reconstruction that is compatible with a more or less unchanged configuration of Laurentia, Siberia and the North China craton since about 1800 Ma  相似文献   

6.
Summary. A palaeomagnetic study of Middle to late Cretaceous redbeds from Linzhou basin (Lhasa block), north of the Yarlung Zangbo suture zone, gives a stable palaeomagnetic direction of magnetization with a positive fold-test: six sites, 57 samples, D = 333°, I = 38°, k = 78, α95= 8°, pole 64°N, 348°E. We discuss the problem of a possible remagnetization but consider that this direction of magnetization gives a good approximation for the palaeolatitude of the Lhasa block during Middle to late Cretaceous time. Results from more recent Tibetan formations are also presented: late Cretaceous to Palaeocene sediments and volcanics give a lower palaeolatitude of 10° N and but more recent andesites have emplaced about 30°N, close to the present-day latitude. An interpretation is proposed whereby the Lhasa block, which was a part of Asia in the early Cretaceous, has undergone first a southward motion accompanied by an anticlockwise rotation and then, after the Palaeocene, a northward motion under the constraint of the colliding India.  相似文献   

7.
The asymmetry (skewness) of marine magnetic anomaly 32 (72.1–73.3  Ma) on the Pacific plate has been analysed in order to estimate a new palaeomagnetic pole. Apparent effective remanent inclinations of the seafloor magnetization were calculated from skewness estimates of 108 crossings of anomaly 32 distributed over the entire Pacific plate and spanning a great-circle distance of ~12  000  km. The data were inverted to obtain a palaeomagnetic pole at 72.1°N, 26.8°E with a 95 per cent confidence ellipse having a 4.0° major semi-axis oriented 98° clockwise of north and a 1.8° minor semi-axis; the anomalous skewness is 14.2° ± 3.7°. The possible dependence of anomalous skewness on spreading rate was investigated with two empirical models and found to have a negligible effect on our palaeopole analysis over the range of relevant spreading half-rates, ~25 to ~90  mm  yr−1 . The new pole is consistent with the northward motion for the Pacific plate indicated by coeval palaeocolatitude and palaeoequatorial data, but differs significantly from, and lies to the northeast of, coeval seamount poles. We attribute the difference to unmodelled errors in the seamount poles, mainly in the declinations. Comparison with the northward motion inferred from dated volcanoes along the Hawaiian–Emperor seamount chain indicates 13° of southward motion of the Hawaiian hotspot since 73  Ma. When the pole is reconstructed with the Pacific plate relative to the Pacific hotspots, it differs by 14°–18° from the position of the pole relative to the Indo–Atlantic hotspots. This has several possible explanations including bias in one or more of the palaeomagnetic poles, motion between the Pacific and Indo–Atlantic hotspots, and errors in plate reconstructions relative to the hotspots.  相似文献   

8.
Summary. Palaeomagnetic data from 71 hand samples of igneous rocks of Late Ordovician age exposed in western Argentina (31.3°S, 69.4°W, Alcaparrosa Formation) are given. Stable remanent magnetization was isolated in the majority of samples; they yield a palaeomagnetic pole at 56°S 33°E ( N = 8, α95= 16°). Whole rock K-Ar age determinations yield an age of 416 ± 10 Myr for a pillow lava of the Alcaparrosa Formation.
Palaeomagnetic data for South America, Africa, Australia, Antarctica and India suggest that Gondwana was a unit at least as far back as 1000 Myr. The palaeomagnetic data define a rapid polar migration for Gondwana in Ordovician time which is consistent with the widespread occurrences of Late Ordovician glacial deposits across this supercontinent.  相似文献   

9.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

10.
Recent interest has focused on whether South Korea may have undergone variable tectonic rotations since the Cretaceous. In an effort to contribute to the answer to this question, we have completed a palaeomagnetic reconnaissance study of Early Cretaceous sedimentary and igneous rocks from the Kyongsang basin in southeast Korea. Stepwise thermal demagnetization isolated well-defined characteristic magnetization in all samples. The palaeomagnetic directions reveal patterns of increasing amounts of clockwise (CW) rotation with increasing age for Aptian rock units. Palaeomagnetic declinations indicate clockwise vertical-axis rotations of R = 34.3° ± 6.9° for the early Aptian rock unit, R = 24.9° ± 10.6° for the middle Aptian, and R = −0.9° ± 11.8° for the late Aptian relative to eastern Asia. The new Cretaceous palaeomagnetic data from this study are consistent with the hypothesis that Korea and other major parts of eastern Asia occupied the same relative positions in terms of palaeolatitudes in the Cretaceous. An analysis of and comparison with previously reported palaeomagnetic data corroborates this hypothesis and suggests that much of Korea may have been connected to the North China Block since the early Palaeozoic. A plausible cause of the rotation is the westward subduction of the Kula plate underneath the Asian continent, which is inferred to have occurred during the Cretaceous according to several geological and tectonic analyses.  相似文献   

11.
Summary. The Pacific plate's late Maastrichtian (∼ 69 Ma) palaeomagnetic pole, which constrains the northward motion of the Pacific plate during the Cainozoic and latest Cretaceous, was studied. A recently proposed method for obtaining oceanic plate palaeomagnetic poles by combining dissimilar data was extended to accept, as input, the relative amplitudes of magnetic lineations with different azimuths or widely separated sites or both. Combining late Maastrichtian palaeomagnetic data-the relative amplitudes and skewness of magnetic lineations, palaeolatitudes from a palaeomagnetic study of basalt and sediment in vertical cores, a pole from the inversion of the magnetic anomaly over a seamount, and present locations of equatorial sediment facies—yielded a best fit pole of 71°N, 9°E and a 95 per cent confidence ellipse with the major semiaxis of 6° striking 91° clockwise from north and the minor semiaxis of 2° striking 1° clockwise from north. This best fit pole, when compared to the pole expected if the hotspots have been fixed with respect to the spin axis, demonstrates that the hotspots in the Pacific Ocean have shifted ∼ 10° south with respect to the spin axis during the Cainozoic. This best fit pole, when compared to the best fit Campanian pole of the Pacific plate, demonstrates that the pole wandered rapidly, 1.1° Ma-1, with respect to the Pacific plate during the latest Cretaceous.  相似文献   

12.
Summary. In addition to a component (A) of recent origin, two NRM components are distinguished in the Cambro-Ordovician redbeds of the Armorican Massif. In most sites other than those from northern Brittany the oldest (C) is probably Silurian or early Devonian, and is mainly carried by specularite with high blocking temperatures. This component was variably overprinted by a Devonian or early Carboniferous component (B3) which was probably acquired as a viscous PTRM on uplift after burial, and is carried by hematite pigment with intermediate to high blocking temperatures. In the red succession of Plourivo-Bréhec (northern Brittany) declination scatter of two intermediate to high blocking temperature components (B1 and B2) is consistent with clockwise rotation of the bulk of Europe during the late Carboniferous, implied independently by published European Carboniferous palaeomagnetic data.
Stable NRM in the Erquy Spilite Series yields a palaeomagnetic pole at 344° E, 35° N ( dp = 21°, dm = 22°), and was probably acquired during remagnetization following Late Precambrian or early Cambrian folding. This is consistent with a middle to late Cambrian age of remagnetization estimated by comparison with other poles of known age.
A palaeomagnetic pole position at 332° E, 34° S ( dp = 4°, dm = 7°) determined for the Hercynian Trégastel-Ploumanac'h complex is consistent with other middle to late Carboniferous poles from elsewhere in Europe.  相似文献   

13.
Summary. Stable natural remanent magnetization (NRM) in the Jersey Volcanics and in a single rhyolite dyke was probably acquired during the Cambrian before folding of the volcanics in the Cadomian Orogeny. After dip correction, the volcanics yield a palaeomagnetic pole at 323° E, 52° N ( dp = 33°, dm = 35°). In Jersey dolerite dykes three groups of stable NRM directions are recognized, with palaeomagnetic poles at 248° E, 26° N ( dp = 10°, dm = 20°), 339° E, 1° S ( dp = 9°, dm = 12°), and 336° E, 31° S ( dp = 5°, dm = 9°). Comparison with the European apparent polar wander path implies that stable NRM in these groups was acquired respectively during Late Precambrian or early Cambrian, Siluro-Devonian and middle Carboniferous time. The stable NRM of the Jersey lamprophyre dykes yields a palaeomagnetic pole at 322° E, 16° N ( dp = 31°, dm = 38°) and is probably of Silurian or Devonian age.
These palaeomagnetic poles and other new data determined by the author for the Armorican Massif can be fitted to a common apparent polar wander path for Europe, and this implies that the basement of Lower Palaeozoic Europe extended from the Baltic Shield at least as far south as the Armorican Massif. The Hercynian Orogeny in these parts of Europe was therefore probably intracratonic. This polar wander path implies that in early Cambrian time the pole did not move significantly relative to Europe, but that this was followed by a large middle to late Cambrian polar shift which corresponded to rapid drift of Europe across the South Pole.  相似文献   

14.
Summary. From nine Upper Cretaceous—Lower Tertiary (85 ± 5–66 ± 5 Ma) volcanic hills in Central Argentina (33°S, 65°W), 26 hand samples were collected yielding a palaeomagnetic pole at 45°E 70°s ( A 95 = 12.1°; k = 13.6; N = 12) after AC cleaning. Three sites show normal and nine reversed polarity. This pole is close to the pole for the late Cretaceous (69 Ma) Andacolo Series.  相似文献   

15.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

16.
Summary. Palaeomagnetic and isotopic results from the Kaoko lavas, Hoachanas basalts and dolerite sills of South-West Africa indicate that the Upper Triassic-Lower Jurassic Stormberg flows of South Africa may have extended into SW-Africa and that younger igneous events of Lower Cretaceous age were simultaneous with the Serra Geral volcanism in Brazil. Five analyses on three samples of the Keetmanshoop sills gave K-Ar ages between 178 ± 4 and 199 ± 4 Ma, four analyses of two samples of the Hoachanas basalts gave ages between 161 ± 3 and 173 ± 2 Ma and eight analyses of five samples of Kaoko basalt gave ages between 110±4 and 128 ± 2 Ma.
The components of remanent magnetization (RM) used to compute palaeomagnetic pole positions for the Kaoko lavas (48° N, 93° W, A95 = 3°) and for the Hoachanas basalts (61° N, 106° W, A95 = 7° are stable to alternating field (AF) and thermal demagnetization.
Correlation on a pre-drift map and on a map reconstructed for 112 Ma BP (before present) between the palaeomagnetic poles from the Kaoko and Serra Geral lavas suggests that the South Atlantic had not opened appreciably by 112 Ma BP. Cretaceous pole positions for S. America and Africa on a map reconstructed for 80 Ma BP are also discussed.  相似文献   

17.
Summary. Palaeomagnetic and K–Ar whole rock age studies are reported from samples of the Camaraca Formation exposed near Arica (18.6° S, 70.3° W), Chile. The Camaraca Formation is composed of andesites and interbedded marine shales which yield a fauna placing the formation in the Bajocian–Callovian stages of the Jurassic. Our sampling sites span a strati-graphic thickness of 2 km and yield a reversal stratigraphy of: N–R–N. The K–Ar isochron method, applied to least altered samples from the formation, gives a sharply defined age of 157 Myr which is in agreement with the palaeontologically assigned age of the formation. Normal and reversed directions of remanent magnetization, isolated by of and thermal de-magnetization methods, are statistically antiparallel. The pole position, computed from these directions of magnetization, is at 010° E, 70%0 S ( A 95= 6.0°). This pole position, when compared with the well-studied Chon Alice Formation of Argentina, suggests that the sampling region has under-gone a 28°± 28° counter-clockwise rotation about a local vertical axis. The large uncertainty (between 0° and 56°) in this estimate is due to the large scatter in the South American reference data. When compared with African Jurassic palaeopoles, with allowance made for the opening of the South Atlantic, a counter-clockwise rotation of 44°± 14° is indicated.  相似文献   

18.
Summary. Detailed palaeomagnetic results from a rapidly deposited 12.5-m Younger Yoldia Clay sequence of age around 14 000 B.P. at the coast cliff at Nørre Lyngby (northern Jutland, Denmark) and a 2-m Older Yoldia Clay sequence of age somewhere between 23 000 and 40 000 B.P. are presented and discussed. The Younger Yoldia Clay spans some 1000–1500 yr and shows swings in inclination and declination of about that period, and also more rapid oscillations which are particularly marked in inclination, showing that rapid secular variations as have occurred during historic times were indeed also present back in time. There exist easterly declinations of 80° to 90° in the upper half of the Younger Yoldia Clay which cause the virtual geomagnetic pole to migrate clockwise to around 50° away from the rotation pole. This we name the 'Nørre Lyngby declination excursion'.
In the Older Yoldia Clay, as well as secular variations in both declination and inclination, significant low inclination values are found, confirming the existence of the recently named 'Rubjerg low inclination excursion', with the virtual geomagnetic pole moving first in a clockwise then in an anticlockwise sense at 40° to 60° away from the rotation pole.
It is therefore inferred that models for the Earth's geomagnetic field should involve at least local rapid eastward as well as westward 'drift' of the non-dipole field components at various times in the past.  相似文献   

19.
New palaeomagnetic data from the Lower and Middle Cambrian sedimentary rocks of northern Siberia are presented. During stepwise thermal demagnetization the stable characteristic remanence (ChRM) directions have been isolated for three Cambrian formations. Both polarities have been observed, and mean ChRM directions (for normal polarity) are: Kessyusa Formation (Lower Cambrian) D = 145°, I = -40°, N = 12, α95= 12.8°; pole position: φ= 38°S, A = 165°E; Erkeket Formation (Lower Cambrian, stratigraphically highly) D = 152°, I = - 47°, N = 23, α95= 6.8°; pole position: φ= 45°S, A = 159°E; Yunkyulyabit-Yuryakh Formation (Middle Cambrian) D = 166°, I = - 33°, N = 38, α95= 4.6°; pole position: φ= 36°S, L = 140°E. These poles are in good agreement with the apparent polar wander path based on the bulk of existing Cambrian palaeomagnetic data from the Siberian platform. In Cambrian times, the Siberian platform probably occupied southerly latitudes stretching from about 35° to 0°, and was oriented 'reversely' with respect to its present position. Siberia moved northwards during the Cambrian by about 10° of latitude. This movement was accompanied by anticlockwise rotation of about 30°. The magnetostratigraphic results show the predominance of reversed polarity in the Early Cambrian and an approximately equal occurrence of both polarities in the part of the Middle Cambrian studied. These results are in good agreement with the palaeomagnetic polarity timescale for the Cambrian of the Siberian platform constructed previously by Khramov et al. (1987).  相似文献   

20.
Palaeomagnetic data from 182 hand samples collected in a rock sequence of about 620-m of red beds of Late Palaeozoic to Early Triassic age exposed in north-western Argentina (30.3° S 67.7° W), are given.
After cleaning, the majority of the Upper Palaeozoic samples (Middle Section of Paganzo Group) show reversed polarity and yield a palaeomagnetic pole at 78° S 249° E (α95= 3°). They also record a polarity transition which we have correlated with the Middle Permian Quebrada del Pimiento Normal Event. The position of the palaeomagnetic pole and the K-Ar age of a basalatic sill at the base of the sequence support this correlation.
Stable remanent magnetization has been isolated in the majority of samples from the Upper Section of the Paganzo Group; it is predominantly reversed and reveals three normal events and also three geomagnetic excursions suggesting an Illawarra Zone age (post Kiaman, Late Tatarian-Early Scythian). The palaeomagnetic pole of the reversely magnetized samples is located at 75° S 285° E(α95= 13°).
The red beds involved in this study are correlated with red beds from the Corumbataí Formation (State of Paraná, Brazil) and with igneous rocks from the Quebrada del Pimiento Formation (Province of Mendoza, Argentina).
The South American Middle and Upper Permian, Upper Permian—Lower Triassic, Lower, Middle and Upper Triassic and Middle Jurassic palaeomagnetic poles reflect a quasistatic period with mean pole at 82° S 244° E, (α95= 4°) which followed the South American Late Palaeozoic polar shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号