首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cold-water scleractinian corals Lophelia pertusa and Madrepora oculata form mound structures on the continental shelf and slope in the NE Atlantic. This study is the first to compare the taxonomic biodiversity and ecological composition of the macrobenthos between on- and off-mound habitats. Seven box cores from the summits of three mounds and four cores from an adjacent off-mound area in the Belgica Mound Province in the Porcupine Seabight yielded 349 species, including 10 undescribed species. On-mound habitat was three times more speciose, and was richer with higher evenness and significantly greater Shannon's diversity than off-mound. Species composition differed significantly between habitats and the four best discriminating species were Pliobothrus symmetricus (more frequent off-mound), Crisia nov. sp, Aphrocallistes bocagei and Lophelia pertusa (all more frequent on-mound). Filter/suspension feeders were significantly more abundant on-mound, while deposit feeders were significantly more abundant off-mound. Species composition did not significantly differ between mounds, but similarity within replicates decreased from Galway Mound<Thérèse Mound<off-mound. We propose that, despite having greater vertical habitat heterogeneity that supports higher biodiversity, coral mounds have a characteristic “reef fauna” linked to species’ biology that contrasts with the higher horizontal habitat heterogeneity conferred by the action of deposit feeders and a varied seabed sedimentary facies off-mound. Standardisation of equipment and restriction of analyses to higher taxonomic levels would facilitate prospective comparative analyses of cold-water coral biodiversity across larger spatio–temporal scales.  相似文献   

3.
Long-term (⩽1-year) records obtained by seabed observatories (BOBO) and repeated (24-h) CTD casts show the presence of a highly energetic environment in and around two cold-water carbonate-mound provinces, on the Southwest and Southeast Rockall Trough (SW and SE RT) margin. Carbonate mounds, covered with a thriving coral cover, are embedded mainly in the Eastern North Atlantic Water (ENAW) and are observed in a confined bathymetric zone between 600 and 1000 m water depth. Cold-water corals seem to be restricted in their growth by temperature and food availability. The presence of living corals on top of the carbonate mounds appears linked to the presence of internal waves and tidal currents in the water column, and consequently carbonate mound structures are shaped by the local hydrodynamic regime. Mound clusters have an elongated shape perpendicular to the regional contours and corresponding to the direction of the highest current speeds. On the SW RT margin temperature, salinity and current speed reflect a diurnal tidal pattern, causing maximum temperature variations at 900 m depth of more than 3 °C. Current speeds up to 45 cm s−1 occur, and a residual current of 10 cm s−1 is directed along the slope to the southwest. At the SE RT margin the temperature of the bottom water fluctuates more than 1 °C with a semi-diurnal tidal cyclicity. Amplitudes of average and peak current speeds here are comparable with those measured on the southwest margin, but the residual current in this area is directed to the northeast. Tidal currents and internal waves at both margins force the formation of intermediate and bottom nepheloid layers and bring fresh food particles with increased velocity to the mounds. The distribution of corals in both mound areas is considered directly related to the presence of enhanced turbidity. An increase in temperature can be directly related to an increase in the amount of particles in the water column. Current velocity increases when a transition occurs from cold to warm waters. High current velocities prevent local sedimentation but provide sufficient food particles to the corals, so that the corals thrive at the mound summits.  相似文献   

4.
The Tournasian age Pekisko carbonates in the Normandville Field (northwestern Alberta) form waulsortian-like, bryozoan/crinoid mounds that developed in fairly deep, low energy, cool water systems, close to the ramp margin. Three main depositional environments occur: (1) crinoidal apron with wackestone, grainstone and floatstone facies; (2) mound flank with grainstone, wackestone, packstone and floatstone facies dipping 35°; and (3) bryozoan mound core, composed of rudstone and floatstone facies with fenestrate bryozoa, minor crinoids and carbonate mud. Local highs due to fault-bounded blocks, created from the collapse of the Devonian Peace River High, may have controlled the location of mound nucleation.Diagenesis of the bryozoan/crinoid mounds included calcite cementation, compaction, dolomitization, silicification, and hydrocarbon emplacement events. The mound core facies contains submarine fascicular optic calcite and bladed/prismatic calcite cements, and later ferroan, brightly luminescent, pore-filling blocky spar cement. The crinoid apron facies contains syntaxial cement associated with crinoids, and the ferroan blocky spar cement. The mounds are dominantly limestone; however, in one well, dolomite dominates the lower section. Four types of dolomite have been identified: partial replacive; chemical-compaction-related, pervasive dolomite and saddle dolomite cement. All dolomites are non-stoichiometric (CaCO3 mole% 56.6–62.6). The partial, zoned replacive dolomite replaces micrite and syntaxial rim calcite in mound flank and crinoid apron facies. The chemical compaction-related dolomite is found along dissolution seams and stylolites and has similar CL characteristics to the replacive dolomite. The pervasive dolomite is fabric destructive and has dull cores and bright rims in CL. Saddle dolomite (0.15 mm) has brightly-luminescent, concentric zoning and occurs in vugs and fossil pore spaces.Chemical and isotopic analysis of the bryozoan/crinoid mounds indicate that the original marine signatures in micrite, early cements, some crinoids and brachiopods have been preserved. However, carbon isotopic values for some crinoids, matrix and dolomite show more positive values compared to known Mississippian carbonate values. Recrystallization during shallow burial has reset the oxygen isotopic composition of some crinoids and micrite. Oxygen and carbon isotopic compositions of most dolomites overlap with altered crinoids and early calcite cements. However, saddle dolomites have lighter δ18O values, similar to saddle dolomites from the Devonian Wabamun Group in this area. The isotopic variations in later ferroan calcite cements show an inverted-J trend, possibly due to variable amounts of water-rock interaction. While the Sr-isotopic ratio of submarine calcite cement coincides with that of Mississippian seawater, the later ferroan calcite cement is more radiogenic, indicating a different source of fluids.  相似文献   

5.
The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600?C1,150?m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60?m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals (Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.  相似文献   

6.
Measurements of near-seabed currents at different carbonate mound locations have demonstrated the presence and influence of bottom-magnified diurnal-period tidal motions. These bottom-trapped waves occur at a depth where the product of local vertical density stratification and seabed slope is a maximum. The seabed currents are magnified significantly if the diurnal forcing period is resonant with the combination of stratification and seabed slope. At the Belgica mounds (eastern Porcupine Sea Bight), there is a correlation between the cross-slope alignment of individual carbonate mounds and the direction of the major axis of the largest (diurnal) tides. The pattern suggests that the enhanced tidal currents play a major role in the shape of developing mounds over a long time period. A similar relation appears to hold at the Logachev mounds (SE Rockall Bank), although less clear because tides are not amplified to the same degree. At other mound locations where enhanced diurnal currents are not present, a more irregular distribution is observed. This suggests that the diurnal currents may be important only at certain carbonate mound locations, and that at these locations a more distinctive alignment of mound structures is produced.  相似文献   

7.
8.
Numerous elongated mounds and channels were found at the top of the middle Miocene strata using 2D/3D seismic data in the Liwan Sag of Zhujiang River Mouth Basin(ZRMB) and the Beijiao Sag of Qiongdongnan Basin(QDNB). They occur at intervals and are rarely revealed by drilling wells in the deepwater areas. Origins of the mounds and channels are controversial and poorly understood. Based on an integrated analysis of the seismic attribute, palaeotectonics and palaeogeography, and drilling well encountering a mound, research results show that these mounds are dominantly distributed on the depression centres and/or slopes of the Liwan and Beijiao sags and developed in a bathyal sedimentary environment. In the Liwan and Beijiao sags, the mounds between channels(sub) parallel to one another are 1.0–1.5 km and 1.5–2.0 km wide, 150–300 m and 150–200 m high, and extend straightly from west to east for 5–15 km and 8–20 km, respectively. Mounds and channels in the Liwan Sag are parallel with the regional slope. Mounds and channels in the Beijiao Sag, however, are at a small angle to the regional slope. According to internal geometry, texture and external morphology of mounds, the mounds in Beijiao Sag are divided into weak amplitude parallel reflections(mound type I), blank or chaotic reflections(mound type II), and internal mounded reflections(mound type Ⅲ). The mounds in Liwan Sag, however, have the sole type, i.e., mound type I. Mound type I originates from the incision of bottom currents and/or gravity flows. Mound type II results from gravity-driven sediments such as turbidite. Mound type Ⅲ is a result of deposition and incision of bottom currents simultaneously. The channels with high amplitude between mounds in the Beijiao and Liwan sags are a result of gravity-flow sediments and it is suggested they are filled by sandstone.Whereas channels with low-mediate amplitudes are filled by bottom-current sediments only in the Beijiao Sag,where they are dominantly composed of mudstone. This study provides new insights into the origins of the mounds and channels worldwide.  相似文献   

9.
Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0–1 cm, >63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray–Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species (Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and/or living cold-water coral ecosystems. Our results also emphasise the importance of studying the small size fractions that yield many infaunal species. A causal link exists between distribution patterns of benthic foraminifera and cold-water coral facies, thus providing an independent tool to identify and describe the different facies in this setting.  相似文献   

10.
Multibeam sonar mapping, drill cores and underwater video data have confirmed the existence of a previously unknown coral reef province in the Gulf of Carpentaria, Australia. Seven reefs, comprised of coral limestone that support living corals have been mapped so far and as many as 50 other reefs may exist in the region. U/Th ages show that reef growth commenced shortly after limestone pedestals were submerged by rising sea level around 10.5 kyr BP, making them the oldest Holocene reefs known in Australia. Reef growth persisted for ~ 2.0 kyr but it had ceased at most locations by ~ 7.0 kyr BP. Measurements of reef growth rates (0.95 to 4 m kyr− 1), indicate that the reefs were unable to keep pace with contemporaneous rapid sea level rise (> 10 m kyr− 1), which is consistent with a “give up” reef growth history. Core samples from reef platforms demonstrate that Pleistocene limestone is exposed at depths of 27 and 30 m below present mean sea level. These depths represent regionally significant phases of reef growth during a prolonged sea level still stand. We conclude that the reefs are therefore mostly relict features, whose major phase of growth and development relates to an earlier, pre-Holocene sea level still stand.  相似文献   

11.
Cold-water coral reefs and mounds are observed mainly on slopes and topographic highs, in areas with high current speeds. Previous investigations of the near-bed hydrodynamic regime around cold-water coral mounds at the Southwest Rockall Trough margin have revealed the presence of internal waves with a diurnal tidal frequency. Hitherto only short-term measurements existed on the particle supply to the corals and data are lacking on the seasonal variability. Bottom landers equipped with sensors recording near-bottom current dynamics were deployed at two sites in a mound area on the Southwest Rockall Trough margin, one with a dense coral cover and one without coral cover. At both sites a similar seasonal variation in internal-wave activity was recorded with high activity during winter and summer months and less dynamic conditions in spring and autumn. Increased intensity of internal-wave activity, reflected in higher average near-bottom current speed and amplitude of daily temperature fluctuations, results in higher mass fluxes as recorded in the sediment traps. On the site without coral cover, mass fluxes are two times higher, compared to the site with dense coral cover. During periods of high mass fluxes a predominance of resuspended material was observed at both sites, as indicated by reduced 210Pb activity and low organic matter concentrations. The flux of resuspended material largely masked the primary pelagic signal. However, low δ15N values in early spring and summer marked the arrival of fresh particles on both sites. A dense coral framework, baffling a large amount of particles settling between the coral branches, results in differences in particle flux, chemical composition and freshness of the trapped material. On the long term the presence of a coral framework plays a crucial role in the build-up of cold-water coral mounds.  相似文献   

12.
The Darwin Mounds are a series of small (5 m high, 75–100 m diameter) sandy features located in the northern Rockall Trough. They provide a habitat for communities of Lophelia pertusa and associated fauna. Suspended particulate organic matter (sPOM) reaching the deep-sea floor, which could potentially fuel this deep-water coral (DWC) ecosystem, was collected during summer 2000. This was relatively “fresh” (i.e. dominated by labile lipids such as polyunsaturated fatty acids) and was derived largely from phytoplankton remains and faecal pellets, with contributions from bacteria and microzooplankton. Labile sPOM components were enriched in the benthic boundary layer (10 m above bottom (mab)) relative to 150 mab. The action of certain benthic fauna that are exclusively associated with the DWC ecosystem (e.g. echiuran worms) leads to the subduction of fresh organic material into the sediments. The mound surface sediments are enriched in organic carbon, relative to off-mound sites. There is no evidence for hydrocarbon venting at this location.  相似文献   

13.
Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (≥ 800 m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10 m high and > 100 m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20 m high and 1 to 3 km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds.  相似文献   

14.
《Marine Geology》2001,172(1-2):57-73
Conical mounds, 1–1.5 km in diameter, and up to 65 m high were mapped at the foot of the active Makran continental margin. The mounds developed seaward of the accretionary front in a relatively planar zone where the beginning of build-up of tectonic pressure initiates deformation. Based on shallow high-resolution 4 kHz sediment echosounding, the sedimentary sequence in this area is generally well stratified, as indicated by closely spaced horizontal reflections. However, in the vicinity of the mounds the sediment is characterised by many acoustically transparent zones, which are 100–300 m in diameter and cut near-vertically through the horizontal reflectors.Two sediment cores from the top of the largest cone and a neighbouring acoustically transparent zone reveal small-scale post-depositional deformation in a stratified sequence and methane concentrations up to 40,000 ng/g. This deformation and disruption of potential reflectors provides a clue to explain the acoustic transparency: we interpret it as caused by the rise of charged fluids and mud, leading initially to the (slight) disturbance of the generally good acoustic reflectors and eventually to the formation of conical mud mounds (mud volcanoes). MCS data, showing a buried mound in an analogous structural position, support the idea of tectonically induced mud/fluid expulsion seaward of the accretionary front.  相似文献   

15.
In Lake Rotoiti, North Island, New Zealand, ‘cyclic change’ apparently occurs among mounds of the ‘Low Mixed Community’ of plants; this is the first evidence of cyclic change in a wholly submerged community. The Low Mixed Community grows on gently sloping, sandy substrates ndar the shores of bays sheltered from the prevailing SW winds, and usually extends to depths of about 1.8 m, where dense beds of Lagarosiphon major begin.

The work we report Was done in 1968–70. We sampled ithe community by transects, various types of quadrats, and by monitoring marked mounds, and from these data we analysed the composition, distribution, growth and fate of mounds at various depths.

We observed that one species of five genera (namely Glossostigma spp., Elarine spp., Lilaeopsis lacustris, Elodea canadensis, and Myriophyllum propinquum) colonised bare sand and trapped more sand; as the mound grew, other species appeared. Mounds in deeper water (> 0.9 m) were larger and floristically richer than those in shallower water, and were thus probably older. In calm conditions, mounds sometimes fused to form a polytypic sward. Typically, however, the backwash of waves eroded the shoreward ends and sides of mounds; the mounds thus became elongated parallel to the wind direction. Provided that their growth at the offshore end at least balanced erosion at their shoreward ends, some marked mounds tended to grow downslope into deeper, less often disturbed water.

Although backwash started mound erosion down to 0.6 m depth, it could also erode bare areas in mounds (caused by die‐off of plants, herbicide sprays, and mechanical damage) down to 1.2 m, the depth to which it normally influenced loose substrate. In exceptional easterly storms, backwash might influence plants at greater depths, and perhaps locally destroy the community so that the cycle would have to begin again.

Briefly, we suggest that these characteristic signs of cyclic change in this community result from an interaction between fragile mounds of plants growing on an unstable, sandy substrate which is easily eroded by wave backwash. However, more observations over a longer time will be needed before our prima facie case for the occurrence of cyclic change can be proved.

We also recorded an invasion of Lagarosiphon over mound plants into depths of only 0.9 m, and we proposed for the “Low Mixed Community” the appropriate name Glossostigmatum aquaticae because Glossostigma spp. predominated in all floristic analyses.  相似文献   

16.
Release of hydrocarbons from sediments is important in increasing habitat heterogeneity on deep ocean margins. Heterogeneity arises from variation in abiotic and biotic conditions, including changes in substratum, geochemistry, fluid flow, biological communities and ecological interactions. The seepage of heavy hydrocarbons to the seafloor is less well studied than most other cold seep systems and may lead to the formation of asphalt mounds. These have been described from several regions, particularly the Gulf of Mexico. Here, we describe the structure, potential formation and biology of a large asphalt mound province in Block 31SE Angola. A total of 2254 distinct mound features was identified by side-scan sonar, covering a total area of 3.7 km2 of seafloor. The asphalt mounds took a number of forms from small (<0.5 m diameter; 13% observations) mounds to large extensive (<50 m diameter) structures. Some of the observed mounds were associated with authigenic carbonate and active seepage (living chemosynthetic fauna present in addition to the asphalt). The asphalt mounds are seabed accumulations of heavy hydrocarbons formed from subsurface migration and fractionation of reservoir hydrocarbons primarily through a network of faults. In Angola these processes are controlled by subsurface movement of salt structures. The asphalt mounds were typically densely covered with epifauna (74.5% of mounds imaged had visible epifauna) although individual mounds varied considerably in epifaunal coverage. Of the 49 non-chemosynthetic megafaunal taxa observed, 19 taxa were only found on hard substrata (including asphalt mounds), 2 fish species inhabited the asphalt mounds preferentially and 27 taxa were apparently normal soft-sediment fauna. Antipatharians (3.6±2.3% s.e.) and poriferans (2.6±1.9% s.e.) accounted for the highest mean percentage of the observed cover, with actinarians (0.9±0.4% s.e.) and alcyonaceans (0.4±0.2% s.e.) covering smaller proportions of the area. Asphalt mounds represent a common and important habitat on several margin systems globally and should be recognised in future environmental assessment and management of these areas.  相似文献   

17.
Winter-spring phytoplankton blooms in Dabob Bay, Washington   总被引:4,自引:2,他引:4  
Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers.Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m−2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.  相似文献   

18.
Seafloor acoustic and photographic imagery combined with high- resolution bathymetry are used to investigate the geologic and tectonic relations between active and relict zones of hydrothermal venting in the TAG (Trans-Atlantic Geotraverse) hydrothermal field at 26°08N on the Mid-Atlantic Ridge (MAR). The TAG field consists of a large, currently active, high-temperature mound, two relict zones (the Alvin and Mir zones), and an active low-temperature zone. The active mound and the Alvin relict zone lie along a series of closely-spaced, axis-parallel (NNE-trending) faults in an area of active extension east of the neovolcanic zone. The Alvin zone extends for 2.5 km along these faults from the valley floor onto the eastern wall, and consists of at least five mounds identified using DSL-120 sidescan sonar and bathymetric data. The existence of sulfide structures on most of these mounds is verified with near-bottom electronic still camera (ESC) images from the Argo-II deep-towed vehicle, and is confirmed in at least one case with collected samples. Two of these mounds were previously unidentified. The existence of these mounds extends the length of the Alvin zone by ~0.5 km to the south. Much of the Alvin relict zone appears to be buried by debris from a large mass wasting event on the eastern wall of the median valley. The Mir zone, located on normal fault blocks of the eastern valley wall, cannot be clearly identified in the sidescan data and no structural connections from it to the active mound or Alvin zone can be discerned. The active mound is located at the intersection of an older oblique fault set with the younger axis- parallel faults which extend into the Alvin relict zone, and no fresh volcanics are observed in the vicinity of the mound. The fact that both the active mound and the Alvin relict zone lie along the same set of active, axis-parallel faults suggests that the faults may be a major control on the location of hydrothermal activity by providing pathways for fluid flow from a heat source at the ridge axis.  相似文献   

19.
The paper concerns beach growth by trapping longshore drift to form a protective beach seaward of the principal “weather” breakwater at the Port of Timaru, east coast, South Island. This “spending beach” concept was aproached by evaluating downdrift extension and considerable progradation of an existing accumulation at South Beach which is a product of harbour development since 1879 and which was held in quasi-stability by ongoing extractions of the net surplus littoral drift of coarse sands and gravels (averaging 60,000 m3 yr−1).A one-line model was adapted from sand beach conditions and scaled to the morphology and processes of the mixed sand and gravel beaches at Timaru. Calibration of the model was performed from related research into the rates and temporal pattern of longshore drift on South Beach. A hundred year history of shoreline progradation against the harbour structures was utilised to verify the model.The concept offered a high benefit: cost ratio for a small engineering intervention provided shoreline forms and behaviour could be specified sufficiently for planning, statutory consent, engineering, economic and environmental impact assessment purposes. A 150 m long spur groin near the harbour entrance would trap about 12 ha of sand and gravel in about 8 years. The new shore would be better aligned to the dominant swell and storm waves than the present shore, so reducing long term net drift rates.Construction of the scheme commenced in May 1987 and progress to date is detailed.  相似文献   

20.
An investigation has been made of available data on the saturation state of seawater with respect to calcium carbonate and its possible significance for scale formation on Ocean Thermal Energy Conversion (OTEC) heat exchangers. Pertinent oceanographic data is lacking at or near potential OTEC sites for the calculation of the degree of saturation of seawater with respect to calcium carbonate. Consequently, only “extrapolated” saturation values can be used. These indicate that near surface seawater is probably supersaturated, with respect to the calcium carbonate phases calcite and aragonite, at all potential OTEC sites. The deep seawater that would be brought to the surface at the potential Atlantic Ocean sites is also likely to be supersaturated with respect to calcium carbonate. The deep seawater at the potential Pacific Ocean sites may be slightly undersaturated.The fact that OTEC heat exchangers will be operating in seawater, which is supersaturated with respect to calcium carbonate, means that if nucleation of calcite or aragonite occurs on the heat exchanger surfaces, significant growth rates of calcium carbonate scale may be expected. The potential for calcium carbonate nucleation is highest at cathodic metal surface locations, which are produced as the result of aluminum corrosion in seawater. Consequently, corrosion and scale formation may be closely related. What the possible effects of biofouling may be on this process are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号