首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
潮汐应变对长江口北槽枯季湍流混合与层化的影响   总被引:1,自引:0,他引:1  
利用TELEMAC-3D开展了长江口北槽2010年枯季条件下湍流混合与层化的有限元数学模拟研究。该模型在外海开边界设置了8个主要分潮,并在自由表面考虑了定常风的影响,利用北槽水域3个潮位站(横沙、北槽中、牛皮礁)和2个水文观测站(北槽中段CSW、北槽下段CS8)2010年枯季的潮位、流速及盐度观测资料对模型进行验证并获得了良好的精度,从而得到北槽水域纵向、平面流场和盐度场。模拟得到的流速、盐度被用来计算势能差异(φ)、势能差异变化率(φ/t)、Simpson数(Si)和梯度Richardson数(Ri)。结果显示:1)北槽水域大潮平均和小潮平均的势能差异的变化范围分别约为0~30 J/m3和0~90 J/m3,且较大的势能差异基本位于主航槽,这些表明北槽水体小潮的层化大约是大潮的3倍,主航槽的层化强于坝田区,而北槽中段往往具有更强的层化。2)落急时刻,就北槽下段而言,潮汐应变、潮汐与风共同搅动引起的势能差异变化率的范围分别约为-20×10-4~100×10-4W/m3、0~100×10-4W/m3,这些表明,从大潮至小潮,潮汐应变总体增强而潮汐与风共同搅动总体减弱。空间上,主航槽丁坝附近的潮汐应变明显强于坝田区,潮汐与风共同搅动的强度在坝田区内、外也存在差异,导堤和丁坝的影响明显。3)对于北槽下段CS8站,大潮至中潮的Si数在0.15~0.4之间(介于下临界值0.088和上临界值0.84之间),表明潮汐与风共同搅动占优,属于应变致周期性层化(SIPS)。小潮的Si数在0.9~1.5之间(高于上临界值0.84),表明潮汐应变显著增强并占优,属于持续性层化。4)北槽下段CS8站梯度Ri数的量级范围在混合较好的表层和底层约10-3~10-2,在层化较好的中间水层约100~101。该站湍动能耗散率的量级范围大潮为10-3~10-9W/kg,小潮为10-5~10-10W/kg,具有明显的M4周期性特征和涨、落潮不对称分布,且表层和底层分别由于风应力和底摩擦作用而具有较强的耗散,中间水层稳定层化区的耗散则显著减小,潮汐应变是造成湍动能耗散率在涨、落潮周期内不对称分布的重要因素。  相似文献   

2.
长江口邻近海域具有显著的强潮特征,除近岸海域外,离岸海域缺乏长期实测的潮汐潮流资料.本文分析了长时间序列的水位观测资料,结果显示长江口海域的潮汐类型属于正规半日潮,近岸海域浅水分潮显著;M2分潮是最显著的半日分潮,振幅具有从东面开阔海域向西面杭州湾口浅水海域或岛群增加的趋势.剖面海流观测资料表明本海域的潮流类型为正规半...  相似文献   

3.
研究长江口和浙江近岸海域的水团流向、缺氧程度、潮汐作用以及养殖活动对表层沉积物中颗粒磷赋存形式的影响,对东海生态环境的可持续发展有着重要的意义。长江口以北和浙江近岸泥质区各存在一个缺氧中心,杭州湾属于强潮区,而象山港遍布养殖场。2018年8—9月在上述4个海域分别采集表层沉积物,采用SEDEX方法进行了颗粒磷的形态划分和含量测定。研究结果表明:在长江口外北部缺氧区和浙江近岸泥质区的南部缺氧区,由于沉积物-水界面的还原环境可以活化铁结合态磷,使之转变为生物可以直接利用的弱吸附态无机磷,因此表现出沉积物中铁结合态磷的低值和弱吸附态无机磷的高值;前者的缺氧程度高于后者,因此其铁结合态磷的含量相应更低。杭州湾和象山港海域均受潮汐作用影响,两者沉积物中磷的分布比较均匀。象山港表层沉积物中铁结合态磷含量均较低,这可能是因为养殖活动造成的水体缺氧通过潮汐活动扩散到整个港底。象山港废弃养殖场沉积物中的碎屑磷和残余有机磷含量显著低于非养殖区,可能是由于养殖活动累积的生物沉积稀释了陆源输入的碎屑颗粒。  相似文献   

4.
长江口夏季水体磷的形态分布特征及影响因素   总被引:2,自引:0,他引:2  
根据2006年7月至9月"海监49号"科学考察船夏季航次的调查数据,分析了长江口及邻近海域水体中磷形态的平面分布特征及其影响因素,结果表明,调查海域水体各种形态磷平均浓度均为底层高于表层,并呈现出由河口向邻近海域降低的趋势.杭州湾及最大混浊带部分区域水体中以颗粒态磷为主,且颗粒态无机磷为磷的主要存在形态;长江口门及江苏东部近海区域水体中以溶解态磷为主,溶解态无机磷为磷的主要存在形态;舟山群岛东部外海区表层水体以溶解态磷为主,溶解态有机磷为磷的主要存在形态,而底层水体中溶解态磷浓度略高于颗粒态磷,以溶解态无机磷为磷的主要存在形态.水体中颗粒态无机磷与颗粒态有机磷、颗粒总磷与总磷、总磷与悬浮颗粒物均呈非常显著的正相关,说明悬浮颗粒物是颗粒态磷的主要影响因素.调查海域外海区域绝大部分站位水体中溶解态无机磷表层浓度接近或小于浮游植物生长限制的动力学最低阈值,是磷限制或潜在的磷限制区域.  相似文献   

5.
基于2020年7月洪水期间采集的长江口及邻近海域的温度、盐度、总悬浮物(Total Suspen-ded Matter,TSM)质量浓度、颗粒有机碳(Particulate Organic Carbon,POC)质量浓度和颗粒有机碳稳定同位素(δ13 CPOC)等数据,分析了洪水事件对该区域POC分布与来源的影响.结果...  相似文献   

6.
邵锡斌  吴莹  胡俊  鲍红艳 《海洋与湖沼》2014,45(6):1288-1294
利用气相色谱法对长江口及其邻近海域的表层颗粒态木质素(p-lignin)进行测定和分析,结合粒度、有机碳(OC%)、叶绿素a(Chl a)、碳稳定同位素(δ13C)等参数研究颗粒态有机物的夏季分布,并对其分布影响因素进行了初步分析。结果表明,悬浮颗粒物粒度组成以粘土和粉砂为主,平均粒径为7.9μm;OC%的值为0.57—7.41%,Chl a的值为0.35—3.71μg/L,δ13C的值为-25.7‰—–16.6‰,在口门外水华站位出现OC%、Chl a和δ13C的最大值,表明浮游生物的现场生产是主要贡献;紫丁香基酚类(S)、香草基酚类(V)和肉桂基酚类(C)8种木质素酚单体的含量Λ8(相对于总有机碳的含量)为0.0406—1.47mg/100mg OC;紫丁香基系列与香草基系列的质量比值(S/V)的分布范围较宽,为0.5—1.6之间,均值为0.8;肉桂基含量与香草基含量比值(C/V)的分布范围为0.02—0.2之间,均值为0.09;香草基酚类的酸醛比值[(Ad/Al)v]在0.24—2.30之间。盐度、总悬浮颗粒物(TSM)浓度是控制长江口内区与邻近海域颗粒态有机物来源与分布差异的重要控制因素,颗粒态木质素在向海输送过程中还会受到矿物组分、生物降解、浮游生物现场生产等各种因素的作用,使其组成成分和性质发生改变。木质素等参数表明最大浑浊带尽管对颗粒态有机物向海输送有改造作用,但是影响区域有限。  相似文献   

7.
长江口跨越锋面颗粒磷季节分布变化特征及影响因素   总被引:1,自引:0,他引:1  
根据2006年夏、冬季以及2007年春、秋季“海监49号”科学考察船的调查数据,分析了长江口跨越锋面区域(31.00°~31.78°N、121.04°~123.99°E)颗粒总磷(PP),颗粒无机磷(PIP),颗粒有机磷(POP)的季节变化和空间分布特征.结果表明,PIP是水体颗粒磷的主要存在形式;受长江径流输沙量的影...  相似文献   

8.
秋季长江口水体颗粒有机碳年际变化及影响因素分析   总被引:1,自引:0,他引:1  
根据2007—2012年长江口及其邻近海域4个航次(11月)调查资料,探讨了长江口秋季颗粒有机碳(POC)时空分布特征;结合长江口环境要素和陆源输入(径流、输沙),分析了秋季POC分布的主要影响因素。结果表明:(1)2007—2012年秋季长江口POC浓度范围为0.03—16.95mg/L,均值2.30mg/L,底层POC浓度高于表层。长江口表层POC浓度存在显著的年际变化特征。(2)长江口区POC分布呈现沿长江径流入海方向降低的趋势,高值区出现在口门附近偏南部水域。口门内和近岸水域POC显著高于近海水域。口门水域POC年际间相对稳定,近岸和近海水域年际变化显著。(3)长江口POC分布与盐度呈非保守性变化,悬浮物是POC分布的主要控制因素,多数年份POC与叶绿素a相关程度较弱。(4)河口来水来沙量对POC浓度具有较强的制约性,径流的主要影响区域在口门内和近岸区,输沙的主要影响区域在最大浑浊带和长江口北部水域。(5)入海输沙量与长江口水域POC相关性最强。咸淡水交汇引起的悬浮物沉积和沉积物的再悬浮强度决定口门内水域POC浓度,浑浊度较高的近岸水体POC对陆源输入泥沙的依赖性较强,长江口外侧海域初级生产力水平成为POC浓度的重要影响因素。  相似文献   

9.
潮汐和流影响下长江口波浪场数值计算   总被引:4,自引:1,他引:4  
采用SWAN模型和REF/DIF模型进行嵌套计算的方法来获取长江口海域实际波浪场.其中设计一种根据入射波向即时生成计算网格的方法,解决REF/DIF模型对于波浪入射角的限制从而实现两种模型的嵌套.为考虑水流和潮位分布的空间差异对波浪传播变形的作用,利用二维流场模型计算长江口的水位和流场过程,在实际波浪计算中引入了水位和水流作用.计算结果与观测资料的对比表明:1)SWAN模型和REF/DIF模型的嵌套计算方法可以作为提高浅水区域波浪计算精度的一种有效途径;2)水位和水流对长江口波浪计算的影响显著,考虑了水位和水流条件后,尤其是在大潮期间,能比较显著地提高计算精度.  相似文献   

10.
简要回顾了潮汐河口环流、湍流、混合与层化的基本物理概念、内涵、研究方法、研究成果,指出了主要的研究进展,最后,展望了今后的研究方向。本文不考虑悬沙和风浪的影响。经典的河口环流也因潮汐应变的出现而受到挑战,河口环流由重力环流和潮汐应变环流构成。"涡黏度-剪切协方差(ESCO)"概念的提出,又区分出重力ESCO环流与潮汐ESCO环流。横向环流,尤其具有曲率的弯道中的横向环流,也得到进一步的理解。涡度方法的应用,揭示横向环流不仅由各种不同物理机制造成,而且对纵向河口重力环流有重要的影响。分层流中剪切湍流的理论加深了人们对潮汐河口湍流、混合的物理学的认识,势能差异方程更是使得定量理解潮汐河口混合与层化的三维时间、空间变化成为可能。  相似文献   

11.
珠江口横门大气氮、磷干湿沉降的初步研究   总被引:9,自引:0,他引:9       下载免费PDF全文
通过对2006年12月至2007年11月中山横门的大气沉降采样分析, 初步探讨了珠江口大气氮、磷干湿沉降的特征。结果表明, 观测期间铵态氮(NH4+-N)、硝态氮(NO3--N)、总氮(TN)、总磷(TP)降雨量加权平均浓度分别为0.82、0.52、2.14、0.039mg.L-1, 干湿总沉降通量分别为1.584、1.142、4.295和0.055g.m-2.a-1。NH4+-N、NO3--N和TN干、湿沉降通量相当, 而TP以湿沉降为主。TN大气沉降通量春、夏、秋三季相当, 均明显高于冬季, TP则以夏季最大, 秋季次之, 而冬季最小。  相似文献   

12.
长江口柱状沉积物中氮的形态特征研究   总被引:1,自引:0,他引:1  
研究分析了长江口柱状沉积物中氮的赋存形态,并结合沉积速率和有机碳含量分析了氮的迁移转化特征和有机质来源.研究结果表明,有机物与硫化物结合态氮(OSF-N)是柱状样可转化形态氮中的主要赋存形态,碳酸盐结合态氮(CF-N)含量最低;位于长江口122°E附近测点的各形态氮的垂直分布与122.6°E附近测点的差异明显,受水动力...  相似文献   

13.
珠江口夏季水体中的氮和磷   总被引:19,自引:0,他引:19  
根据1999年7月17~28日于珠江口现场调查和实验的资料,研究夏季水体中氮、磷的分布、形态变化和初级生产力的限制因素.结果表明该海域氮含量高,N/P属于世界上高值区之一.从河口向外海运输过程中,氮和磷的形态和浓度均有剧烈的变化.虽然氮在中途中有新源的补充;但由于外海水的入侵稀释、生物吸收和形态变化的迁移作用,NO3-和可溶无机氮的浓度总的变化趋势仍是随盐度增大而大幅度地降低,以至珠江口外出现N/P低于16.由于夏季水体层化稳定,在表、底层其生物地球化学变化方向相反,PO43的浓度变化互成镜像关系并可按盐度分为3段不同特征的反应区.初级生产力的限制因素在大部分区域是磷,但从口门至最大浑浊带和口外区则分别是浊度(或光照)及可溶无机氮.现场培养实验再现了真光层和底层氮和磷的生物地球化学过程差异并表明磷的循环和再生比氮迅速;在可溶无机氮浓度大且高N/P的海域,磷的再生可成为水华的引发因素,而氮被耗尽却是水华消亡的原因.总体上夏季该区水体氮的迁出率比磷高.于水体层化稳定的区域,氮和磷的生物地球化学作用在真光层以浮游生物吸收占优势、在下层以有机物的降解和可溶无机态的再生为主,当层化消失、上下水体充分混合则可完成循环.  相似文献   

14.
长江河口淡水端溶解态无机氮磷的通量   总被引:15,自引:1,他引:15  
1998年2和9月在长江河口淡水端连续观测了DIN(NO3-,NO2-,NH4+),PO43-,流速和流向.结果表明,溶解态无机氮、磷浓度的时空变化较复杂;1998年2月NO3-,NO2-,NH4+和PO43-的月通量分别为168241,974.4,19335和2648t,9月的月通量分别为905678,8317,5797和6281t;1998年NO3-,NO2-,NH4+和PO43-年通量分别为497.1×104,3.911×104,10.22×104和4.155×104t.  相似文献   

15.
Water and sediment samples were collected at Datong from June 1998 to March 1999 to examine seasonal changes in the transports of nitrogen (N) and phosphorus (P) from the Changjiang River (Yangtze River) to the East China Sea (ECS). Dissolved inorganic nitrogen (DIN; dominated by nitrate) concentration exhibited small seasonality, and DIN flux was largely controlled by water discharge. Dissolved inorganic phosphorus (DIP) concentration was inversely correlated with water discharge, and DIP was evenly delivered throughout a year. The transports of DIN and DIP from the Changjiang River were consistent with seasonal changes in nutrient distributions and P limitation in the Changjiang Estuary and the adjacent ECS. Dissolved organic and particulate N (DON and PN) and P (DOP and PP) varied parallel to water discharge, and were dominantly transported during a summer flood. The fluxes of DOP and particulate bioavailable P (PBAP) were 2.5 and 4 times that of DIP during this period, respectively. PBAP accounted for 12–16% of total particulate P (PP), and was positively correlated with the summation of adsorbed P, Al–P and Fe–P. Ca–P, the major fraction of PP, increased with increasing percent of CaCO3. The remobilization of riverine DOP and PBAP likely accounted for the summer elevated primary production in DIP-depleted waters in the Changjiang Estuary and the adjacent ECS. The Changjiang River delivered approximately 6% of DIN (1459 × 106 kg), 1% of DIP (12 × 106 kg), and 2% of dissolved organic and particulate N and P to the totals of global rivers. The construction of the Three Gorges Dam might have substantially reduced the particulate nutrient loads, thereby augmenting P limitation in the Changjiang Estuary and ECS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号