首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Arch systems lying above quiescent prominences in the solar corona have long drawn the attention of eclipse observers, and such formations have been investigated since the end of the last century. Almost every eclipse photograph shows one or more arches, and in most cases the arch system is accompanied by a quiescent prominence below it and a helmet streamer above it. Also, in some cases there is a dark cavity between the arch system and the prominence.On large-scale photographs obtained at the November 12, 1966 eclipse, detailed photometry has been carried out on a formation in the corona composed of a helmet streamer straddling two multiple-arch systems each with a dark cavity and a quiescent prominence. The excess of electrons in the arches and the deficiency in the cavities are evaluated. We find that the formation of a prominence requires much more material than available in the cavity before depletion. Consequently the condensation theory of coronal matter into prominences seems to have difficulties explaining the necessary amount of matter in the cases where coronal arches - delineating magnetic field lines above the cavity - may exclude inflow of material from the corona. We comment on the low velocity of solar wind in the helmet streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
G. S. Choe  L. C. Lee 《Solar physics》1992,138(2):291-329
A numerical simulation is performed to investigate the prominence formation in a magnetic arcade by photospheric shearing motions. A two-and-a-half-dimensional magnetohydrodynamic (MHD) code is used, in which the gravitational force, radiative cooling, thermal conduction and a simplified form of coronal heating are included. It is found that a footpoint shear induces an expansion of the magnetic arcade and cooling of the plasma in it. Simultaneously the denser material from the lower part of the arcade is pulled up by the expanding field lines. A local enhancement of radiative cooling is thus effected, which leads to the onset of thermal instability and the condensation of coronal plasma. The condensed material grows vertically to form a sheet-like structure making dips on field lines, leading to the formation of the Kippenhahn- Schlüter type prominence. The mass of the prominence is found to be supplied not only by the condensation of the material in the vicinity but also by the siphon-type upflows. The upward growth of the vertical sheet-structure of the prominence is saturated at a certain stage and the newly condensed material is found to slide down from above the prominence along magnetic field lines. This drainage of material leads to the formation of an arc-shaped cavity of low density and low pressure around the prominence. The problem of force and heat balance is addressed and the prominence is found to be not in a static equilibrium but in a dynamic interaction with its environment.  相似文献   

3.
We have studied chromospheric mass injection into an overlying coronal dipole magnetic field using a 2-D ideal magnetohydrodynamic (MHD) numerical model. The results indicate that such injection can produce magnetic field deformation conducive to active region prominences - namely, Kippenhahn-Schlüter (K-S) type configurations for stable support of injected plasma. We show the optimum conditions for such dynamical formation of K-S-type field configurations.Observations show that an active region prominence formation is preceded by the accumulation of absorptive strands above a neutral line. We hypothesize that an absorptive strand is formed by a chromospheric asymmetric mass injection into the overlying coronal magnetic field and that a necessary condition for the accumulation of the strands is that the mass injection forms a K-S-type field configuration. The results of our numerical simulation of the injection dynamics support our hypothesis. To form a K-S-type magnetic field configuration, we find that a narrow range of injection density, velocity, and magnetic field strength must be used; spicule-like, asymmetric mass injection seems favorable.The limited parameter range that exists for the formation of K-S-type magnetic field configurations in asymmetric injections may explain why active region prominences do not form everywhere on every neutral line.  相似文献   

4.
Lin  Jun 《Solar physics》2004,219(1):169-196
Based on our previous works regarding solar eruptions, we focus on the relationships among different eruptive phenomena, such as solar flares, eruptive prominences and coronal mass ejections (CMEs). The three processes show clear correlations under certain circumstances. The correlation between a CME and solar flare depends the energy that stored in the relevant magnetic structure, which is available to drive the eruption: the more energy that is stored, the better the correlation is; otherwise, the correlation is poor. The correlation between a CME and eruptive prominence, on the other hand, depends on the plasma mass concentration in the configuration prior to the eruption: if the mass concentration is significant, a CME starts with an eruptive prominence, otherwise, a CME develops an without an apparent associated eruptive prominence. These results confirm that solar flares, eruptive prominences and CMEs are different significances of a single physical process that is related to the energy release in a disrupted coronal magnetic field. The impact of gravity on CME propagation and the above correlations is also investigated. Our calculations indicate that the effect of gravity is not significant unless the strength of the background field in the disrupted magnetic configuration becomes weak, say weaker than 30 G.  相似文献   

5.
6.
In this paper we investigate the effects of condensation and thermal conduction on the formation of Kippenhahn-Schlüter (K-S) type prominences in quiet regions (QP) due to symmetric mass injection. To implement this investigation, a self-consistent, two-dimensional, non-planar, time-dependent magneto-hydrodynamic (MHD) simulation model is developed. In the model, we use various values of the injection velocity, density, and magnetic field strength to determine the most favorable conditions for the QP formation. Based on these simulation results, we find that the formation of a K-S-type field configuration should be considered as a dynamic process, which needs both condensation and mass injection to supply enough mass to maintain such a configuration to complete the formation process of quiescent prominence.  相似文献   

7.
Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence – corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, we deduce the dispersion relation for the magnetoacoustic slow and fast modes by assuming evanescentlike perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made to distinguish modes with fastlike or slowlike properties. Internal and external slow modes are governed by the prominence and coronal properties, respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.  相似文献   

8.
Observations show that small-amplitude prominence oscillations are usually damped after a few periods. This phenomenon has been theoretically investigated in terms of non-ideal magnetoacoustic waves, non-adiabatic effects being the best candidates to explain the damping in the case of slow modes. We study the attenuation of non-adiabatic magnetoacoustic waves in a slab prominence embedded in the coronal medium. We assume an equilibrium configuration with a transverse magnetic field to the slab axis and investigate wave damping by thermal conduction and radiative losses. The magnetohydrodynamic equations are considered in their linearised form and terms representing thermal conduction, radiation and heating are included in the energy equation. The differential equations that govern linear slow and fast modes are numerically solved to obtain the complex oscillatory frequency and the corresponding eigenfunctions. We find that coronal thermal conduction and radiative losses from the prominence plasma reveal as the most relevant damping mechanisms. Both mechanisms govern together the attenuation of hybrid modes, whereas prominence radiation is responsible for the damping of internal modes and coronal conduction essentially dominates the attenuation of external modes. In addition, the energy transfer between the prominence and the corona caused by thermal conduction has a noticeable effect on the wave stability, radiative losses from the prominence plasma being of paramount importance for the thermal stability of fast modes. We conclude that slow modes are efficiently damped, with damping times compatible with observations. On the contrary, fast modes are less attenuated by non-adiabatic effects and their damping times are several orders of magnitude larger than those observed. The presence of the corona causes a decrease of the damping times with respect to those of an isolated prominence slab, but its effect is still insufficient to obtain damping times of the order of the period in the case of fast modes.  相似文献   

9.
日珥上升运动和日冕物质抛射的关系   总被引:1,自引:0,他引:1  
吴桂平  许敖敖 《天文学报》1997,38(2):160-166
本文基于观测日珥上升运动与日冕物质抛射(CME)之间的紧密联系和我们对日珥动力学特征的理解,探讨了在背景场作用下,日珥上升时其上方盔状冕流的动力学演化规律;分析了1980年8月18日爆发日珥与对应的CME事件之间的内在关系.结果表明:(1)缓慢上升的日珥只引起盔状冕流缓慢演化;(2)加速上升日珥的加速度和末速度的大小决定形成CME事件的激烈程度;(3)CME事件的能量可能来源于爆发日环释放的磁能.理论分析与观测结果基本一致.  相似文献   

10.
Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.  相似文献   

11.
This paper is an exploration of the possibility that the large-scale equilibrium of plasma and magnetic fields in the solar corona is a minimum energy state. Support for this conjecture is sought by considering the simplest form of that equilibrium in a dipole solar field, as suggested by the observed structure of the corona at times of minimum solar activity. Approximate, axisymmetric solutions to the MHD equations are constructed to include both a magnetically closed, hydrostatic region and a magnetically open region where plasma flows along field lines in the form of a transonic, thermally-driven wind. Sequences of such solutions are obtained for various degrees of magnetic field opening, and the total energy of each solution is computed, including contributions from both the plasma and magnetic field. It is shown that along a sequence of increasingly closed coronal magnetic field, the total energy curve is a non-monotonic function of the parameter measuring the degree of magnetic field opening, with a minimum occurring at moderate field opening.For reasonable choices of model parameters (coronal temperature, base density, base magnetic field strength, etc.), the morphology of the minimum energy solution resembles the observed quiet, solar minimum corona. The exact location energy minimum along a given sequence depends rather sensitively on some of the adopted parameter values. It is nevertheless argued that the existence of an energy minimum along the sequences of solutions should remain a robust property of more realistic coronal wind models that incorporate the basic characteristics of the equilibrium corona- the presence of both open and closed magnetic regions.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
An interesting coronal structure was observed during the solar eclipse of May 30, 1965. This comprised a series of bright arches centered approximately on a quiescent prominence. A bright ray originated near the top of one of the arches and pointed almost radially away from the photosphere. The ray could be followed for 1.5 solar radii and was deflected towards a direction parallel to the equatorial plane. By comparing the photographs with Fraunhofer maps and magnetograms, the following interpretation of the structure was obtained. The prominence lies above the neutral line of an extended bipolar magnetic region. The bright arches coincide with flux tubes arising from small photospheric regions of enhanced magnetic-field strength. The ray represents a projection view of a thin region of enhanced plasma density in the neighborhood of a current sheet which separates two flux tubes of opposite polarity. The ray is interpreted as a coronal streamer, and it is suggested that all streamers are related to current sheets.  相似文献   

13.
Fainshtein  V. G.  Rudenko  G. V.  Grechnev  V. V. 《Solar physics》1998,181(1):133-158
The magnetic field changes in the corona at the site of coronal mass ejections (CMEs) have been investigated using the potential field-source surface model. It is shown that a CME is accompanied by the opening of closed field lines that formed the streamer's helmet base prior to the onset of a coronal disturbance. Two to three days after the appearance of the CME, the field configuration at the location of the coronal ejection reverts approximately to the state pre-existing before the generation of the CME. The appearance of small transient open magnetic tubes has been found after eruption of the coronal mass. These magnetic tubes seem to be the analogs for transient coronal holes.Taking into account the results of calculations of the field changes in the neighbourhood of the CME occurrence site, we have suggested a possible mechanism governing the spatio-temporal correlation between some flares and CMEs. Also, a possible mechanism has been proposed for field reconfiguration in the corona, leading to loss of the equilibrium of the magnetic configuration and to the subsequent generation of a CME in the region of coronal streamer chains separating coronal holes with same-polarity magnetic field.  相似文献   

14.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

15.
We describe the results of a model dynamic simulation of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The anti-buoyancy effect as the prominence forms causes a bending of the confining magnetic field, which propagates toward the semi-rigid ends of the magnetic loop. Thus, a wide magnetic hammock or well (of the normal-polarity Kippenhahn-Schlüter-type) is formed, which supports the prominence at or near the field apex. The simplicity of this 1.5-dimensional model, with its accompanying diagnostics, allows one to comprehend the various contributions to the nonlinear dynamics of prominence condensation and levitation.  相似文献   

16.
A simplified analysis of helmeted coronal structures is carried out and some of the gross properties of such structures discussed. It is found that the magnetically closed region can have but a limited extension into the corona. For temperatures in excess of 1.5 × 106 °K, the maximum height above the limb is about 1.6 R . The maximum possible extension of the helmet from the solar center is exactly one-half the distance to the critical point (where the flow velocity passes through the speed of sound). For this reason, a helmet streamer, at least out to a few solar radii, is essentially a magnetostatic structure - the flow adjacent to the helmet having little effect upon its properties. For given base dimensions, there is a maximum temperature for which a helmet streamer can exist - giving an indication of why such streamers do not appear over young active regions. If the temperature in the helmet and in the streaming region are approximately the same, the helmet height, helmet shape, external flow velocity, and rate of outward decline in the magnetic field are shown to be much more dependent upon the photospheric field distribution than upon the field strength. The density enhancement, however, is a strong function of the field strength. This enhancement is preserved out to the top of the helmet with both the density inside and outside decreasing approximately as predicted by hydrostatic equilibrium. The possible existence of both domed helmets and cusped helmets is demonstrated with the former existing at lower temperatures and the latter at higher temperatures. Cusped helmets occur, however, over a relatively narrow temperature range and are, hence, expected to be less common. The expansion velocity outside the helmet is higher than that predicted by radial flow but increases outward much more slowly. The magnetic field decreases outward proportionally to the square root of the density and inversely proportionally to the velocity - bearing, in general, no relation to a potential field since the rate of decline in field strength is determined by the temperature.On leave from AC Electronics Research Laboratories Santa Barvara, Calif., U.S.A.  相似文献   

17.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

18.
J. Sakai  A. Colin  E. Priest 《Solar physics》1987,114(2):253-271
We investigate a dynamical model of prominence formation in a current sheet at the boundary between two regions of opposite magnetic polarity. Coupled nonlinear equations describing the temporal compression and condensation of plasma in the current sheet are set up as a natural extension of the usual equations for current sheet collapse (Imshennik and Syrovatskii, 1967). It is shown that under certain conditions the current sheet undergoes a nonlinear oscillation during the compression. The thermal instability with cooling is driven by a density enhancement produced during the current sheet formation stage.  相似文献   

19.
An analysis is made of the Martens-Kuin filament eruption model in relation to observations of coronal mass ejections (CMEs). The field lines of this model are plotted in the vacuum or infinite resistivity approximation with two background fields. The first is the dipole background field of the model and the second is the potential streamer model of Low. The assumption is made that magnetic field evolution dominates compression or other effects which is appropriate for a low- coronal plasma. The Martens-Kuin model predicts that, as the filament erupts, the overlying coronal magnetic field lines rise in a manner inconsistent with observations of CMEs associated with eruptive filaments. Initially, the bright arc of a CME broadens in time much more slowly than the dark cavity between it and the filament, whereas in the model they broaden at the same rate or the bright arc broadens more rapidly than the dark cavity, depending on the background field. Thus, this model and, by generalization the whole class of so-called Kuperus-Raadu configurations in which a neutral point occurs below the filament, are of questionable utility for CME modeling. An alternate case is considered in which the directions of currents in the Martens-Kuin model are reversed resulting in a so-called normal polarity configuration of the filament magnetic field. In this case, a neutral line occurs above the current-carrying filament. The background field lines now distort to support the filament and help eject it. While the vacuum field results make this configuration appear very promising, a full two- or more-dimensional MHD simulation is required to properly analyze the dynamics resulting from this configuration.Presently NRC Senior Research Associate at NOAA, Space Environment Laboratory, Boulder, Colorado, U.S.A.At the NASA National Space Data Center.  相似文献   

20.
J. Yang  Y. Jiang  B. Yang  R. Zheng  D. Yang  J. Hong  H. Li  Y. Bi 《Solar physics》2012,279(1):115-126
We will present detailed observations of the asymmetrical eruption of a large quiescent filament on 24 November 2002, which was followed by a two-ribbon flare, three coronal dimmings, endpoint brightenings, and a very fast halo-type coronal mass ejection (CME). Before the eruption, the filament lay along the main neutral line (MNL) underneath a single-arcade helmet streamer with a simple bipolar configuration. However, photospheric magnetic fields on both sides of the filament showed an asymmetrical distribution, and the filament and MNL were not located just at the center of the streamer base but were closer to the eastern leg of the streamer arcade. Therefore, instead of erupting along the streamer’s symmetrical axis, the filament showed a nonradial and asymmetrical eruption. It lifted from the eastern flank of the streamer arcade to impact the western leg directly, leading to an asymmetrical CME that expanded westward; eventually the streamer was disrupted significantly. Accordingly, the opposite-polarity coronal dimmings at both sides of the filament forming in the eruption also showed an asymmetrical area distribution. We thus assume that the streamer arcade could guide the filament at the early eruption phase but failed to restrain it later. Consistent with previous results, these observations suggest that the global background magnetic field can impose additional action on the initial eruption of the filament and CME, as well as the dimming configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号